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NOTATION

Frequency of icosahedron face

Geodesic chord factor

Reduced length of radial cable, ft.

Air pressure used to inflate the air form, psf
Horizontal dome radius at foundation, ft.

Radius of curvature of the air form, ft.

Horizontal radius of circular cable at apex, ft.

Uplift force on air form associated with a tributary

length ‘ring beam’, ft.

Weight of a tributary 1length of foundation between

cables along the dome perimeter, 1b.

Surface area of ’‘skeleton’ dome, ft?

Ring compression on shell at circular rib, 1lb.
Cable tensile force, kips

Height of the dome, ft.

Length of each cable required, ft.

Force in the air-supported form (i.e. fabric), 1lb/ft.

Number of cables required at foundation.

Load along perimeter of circular ’‘rib‘, 1b/ft.
Radius of curvature of the cable net, ft.
Radius of curv. of the module at apex, ft.
Total uplift force on air form, kips

Total weight of the foundation system, kips



CHAPTER 1

INTRODUCTION AND OBJECTIVE

OBJECTIVE

The objective of this thesis is to show how steel cable
nets can be incorporated into an air-supported forming system
to facilitate the construction of large spherical concrete
domes. The steel cable nets not only provide additional
resistance to external forces, but assist in reducing the
radius of curvature of ailr-supported forms. This thesis is
written for an audience who may have limited background with
domes but understand basic structural engineering principles.
The structural analysis and design of concrete domes
constructed with cable nets is beyond the scope of this
thesis. Likewise, a finite element analysis will be required
to complete the structural design of the proposed style of

dones.

INTRODUCTION

The thin shell concrete dome has become a very popular
and affordable structure with a wide variety of applications.
Domes of this type have been constructed to store water,
granular materials, mechanical equipment and fruit. Even
residential homes, churches and schools have been constructed
with this double curved structure. In fact, the double
curvature of the dome is where its efficiency is derived. One
is able to maximize space within a structure while minimizing

the materials required to build it. Unfortunately, in the
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early years of its outset, the cost of building the forms for
a concrete dome easily doubled the cost of the project.
However, due to developments within the last few decades, it
is now possible to avoid the intense formwork required.

The new concept for structural forms involves the
inflation of a flexible membrane form often called a
'balloon.’ The air form is made out of such fabrics as nylon
and polyester in order to meet the requirements of durability,
strength, and shape. In order to create the spherical shape
of an air form, triangular pieces of fabric are welded
together at 1000 degrees Fahrenheit. These welds as well as
the fabric must be capable of minimizing elongations as the
air form is inflated. Before inflating the air form, it is
attached to the foundation or ‘ring beam’ as shown in
Fiéure 1. Once the air-supported form is inflated, there are
several methods that have been developed for the placement of
steel reinforcing and concrete.

In one such system, developed about twenty years ago, the
dome construction actually occurs on the inside. For large
diameter domes, the air form is typically inflated with 1 to
2 in. of water pressure using dual blowers and motors to
provide a continuous supply of air. Once the air form is
fully inflated, urethane foam is sprayed on the inside surface
of the air form providing a means for attaching the
reinforcing steel. In fact, the urethane foam will act as an
insulation layer for the completed structure. Shotcrete is

then applied to the inside surface in 1/2 in. thick layers
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after the reinforcing steel is in place. Starting at the base
of the air form, care must be taken to ensure that the
shotcrete is applied uniformly in order to prevent a local
collapse.

Owing to its efficiency, over 500 concrete domes have
been constructed with this system of air-supported forming in
the United States as well as in various parts of the world.
These domes vary in size from 14 to 260 ft. in diameter and
range from spherical to elliptical. In addition to its cost
effectiveness, the air-supported forming system provides the
advantage of having a controlled atmosphere that permits year
round construction.

Recently, there has been an interest to build large
concrete domes in excess of 300 ft. in diameter (throughout
this thesis, lafge domes will refer to sizes in excess of 300
ft. in diameter). Unfortunately, the air-supported forming
system places an upper limit on the size of a thin shell
concrete dome that can be safely constructed. The typical air
form is only capable of withstanding a certain amount of air
pressure before the allowable stresses in the fabric and the
welds are exceeded. These stresses are directly proportional
to the radius of curvature of the dome surface. In other
words, as the radius of curvature of the dome surface
increases, lower air pressures must be provided to maintain
the same internal stresses in the fabric. However, as shown
later, a minimum amount of air pressure is required such that

the fabric 1is used effectively as a structural form.
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Therefore, the radius of curvature of an air form is currently
limited to a specific value which is calculated in Chapter 2.
Furthermore, a large dome requires additional resistance to
external forces such as those induced by snow, wind, and rain.
The external forces would likely produce unwanted variations
in the air pressure causing the air form to tear and collapse.
For these reasons, large concrete domes have not yet been

constructed using air-supported forming technigques.

CONTENTS

Several topics are discussed throughout this thesis in an
effort to demonstrate that the cable net system is a
legitimate solution ﬁor the safe construction of large
spherical domes. 1In Chapter 2, the current size limitations
of air-supported forms is discussed more in detail, followed
by the proposal of two distinct cable net patterns. In
addition, an explanation of how the cable net patterns will
resolve these size 1limitations will be presented. In
Chapter 3, the radial cable net pattern is outlined. This
chapter is divided into several topics which include radius of
curvature, air form surface area, cable forces, cable lengths,
and stability. The chapter concludes with a discussion of the
problems that have surfaced during research associated with
this cable net pattern. Next, in Chapter 4, the geodesic
cable net pattern is presented. The topics within this
chapter parallel those found in Chapter 3 with the addition of

two more topics. These topics include a brief summary of
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geodesic geometry and typical cable connections. Finally, in
Chapter 5, conclusions are drawn and comparisons between the

two cable net systems are made.



CHAPTER 2

CABLE NET SOLUTION

As stated in Chapter 1, the air-supported form is only
capable of withstanding a certain amount of air pressure
before the allowable stresses in the fabric and the welds are
exceeded. For any size of dome, the force in the fabric is:

N = (p*r,) /2 (2.1)
where

N

force in the fabric, lb/ft.

air pressure used to inflate air form, psf

1

p

r, = radius of curvature of the air form, ft.

The largest thin shell concrete dome constructed with an
air-supported form is about 260 ft. in diameter. For this
particular dome, the air form thickness is approximately 30
mils which is equivilant to 0.030 in. Since this dome was
built as a true hemisphere, the radius of curvature of its air
form was exactly half the dome diameter or 130 ft. The air
pressure used to inflate this air form was approximately 1.75
in. of water. The equivilant value in psf may be calculated
by multiplying the depth of water by its unit weight as
follows:

P = 1.75 * (1/12) * 62.4

= 9.1 psf
With 9.1 psf air pressure and a 130 ft. radius of curvature,
the force in the fabric for the 260 ft. diameter dome is

approximately:



N = (9.1 * 130) / 2

592 1b/ft.
= 49 1b/in.

For most air form manufacturers, this force represents an
upper limit on the allowable force of the air form fabric. In
other words, a 130 ft. radius of curvature is the maximum
curvature that an air form manufacturer allows when using a 30
mil fabric. A thicker air form may be more durable but the
welds used to manufacture it often control its design. With
the use of cable nets, it is possible to decrease the radius
of curvature of the air form and still maintain the fabric
forces below 49 1b/in. for large spherical domes without

increasing the fabric thickness.

CABLE NET PATTERNS

Two distinct cable net patterns have been analyzed for
their use with large spherical concrete domes. The first
pattern is composed of radial cables that extend from the base
of the dome to the apex longitudinally as shown in Figure 2.
This pattern includes a small diameter circular cable or
‘ring’ near the apex. Uniquely, the shape of the finished
dome would resemble a half pumpkin. Unfortunately, during the
research involving this cable net pattern, specific problems
were encountered and will be discussed in detail in Chapter 3.
The second cable net pattern involves a geodesic combination
of hexagons and pentagons as shown in Figure 3. This pattern

is currently more sought after because of its shape,
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aesthetics and practicality,. The—£inished—dome—would
resembleaestheties—and practicali®¥s = The finished dome would

resemble a geodesic pattern or a soccer ball. Throughout this

thesis, this cable pattern will be referred to as the geodesic
cable net pattern.

It is important to note that all of the cables in each
pattern are oriented such that they lay on the surface of a
sphere forming only a portion of that sphere (the portion of
the sphere will hereafter be called the ‘skeleton dome’
because the cables act as the ’skeleton’ or ‘frame’ for the
structural system). Since all the cables lay on the surface
of the same sphere, each cable within a specific cable net
pattern has the same constant radius of curvature that is
equal to that of the ’skeleton’ dome. The radial cable net
pattern will be discussed in detail in Chapter 3 while the

geodesic cable net pattern will be discussed in Chapter 4.

THE SYSTEM

| Now that the cable net patterns have been introduced, the
following will briefly describe the properties of the cable
net patterns and how they fit in the entire system. The
cables are designed to lay over the top of the air form
allowing the fabric to ’balloon out’ between adjacent cables
as the air form is inflated. As the air form ’balloons out’,
its radius of curvature decreases between the cables. Since
the elongation of the air form is minimal, the dimensions and

surface area of the fabric that ‘balloons out’ may be
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determined by methods described in Chapters 3 and 4 on air
form surface areas.

It is important to note that before the shotcrete is
applied to the air form, the cables act as the main structural
components for the entire system. The air form does not fully
resist the forces that are applied to it, but simply transfers
such forces induced by the loadings to the cables. This is
quite different than the conventional use of the air-supported
form where the air form must withstand all of the forces that
are induced by the loadings.

Anchoring the cables to a foundation system such as a
continuous footing or a ’ring beam’ is the most important part
of the cable net system. Connection details will be discussed
at the end of cChapter 4. The foundation must be massive
enough such that its weight resists the uplift forces
described in Chapters 3 and 4. 1In addition, the connection
must be capable of resisting a cable pullout failure in the
concrete. In order to maintain a uniform air pressure within
the dome, the air form must still be-connected to a continuous
footing or ‘ring beam’ as shown in Figure 1. The air form
should be sized such that the ‘ballooning out’ is minimal at
the foundation thus preserving the circular nature of the
‘ring beam’.

After the air form is fulling inflated, the work on the
inside of the dome is very similar to the traditional air form
method. First, urethane foam is sprayed on the inside surface

of the air form providing a means for attaching the
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reinforcing steel. Next, shotcrete is applied to the foam in
uniform 1/2 in. thick layers after the reinforcing is attached
to the foam. Along the cable lines or air form joints,
shotcrete is applied such that beams or ‘ribs’ are formed.
These ‘ribs’ are also built up slowly with 1/2 in. thick
layers until the specified thickness is achieved. This
shotcrete procedure would commence at the base of the dome and
work its way up the air form as the concrete hardens below.
The end result will yield a pattern of thickened concrete
‘ribs’ with sharply curved thin concrete shells between them.
The ‘ribs’ may be as thick as 24 in. or more whereas the
concrete shell between the thickened ’‘ribs’ may only by 3 or
4 in. thick. Therefore, these large domes become ’ribbed’
domes as a result of the cable nets. After the construction
is completed and the concrete hés cured, the cables may be

removed and reused for a dome of the same dimensions.
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CHAPTER 3

RADIAL CABLE NET SYSTEM

The radial cable net system is comprised of several
longitudinal cables that extend from the base of the dome to
the apex. This chapter will include the essential components
that comprise this specific cable net  systen. These
components include the radius of curvature of the air form,
the surface areas of the air form, cable forces, cable lengths
and overall stability. The problems that have arisen during
the research of this cable net pattern which will likely
eliminate this cable pattern as a solution for large domes
will be discussed at the end of the chapter. It is still
convenient, however, to include a Chapter on this cable net
pattern so that the problems can be identified and made known

tc the reader.

RADIUS OF CURVATURE

The radius of curvature of the air form may be considered
the most important component of the cable net system. For a
30 mil fabric, the air form radius of curvature must be less
than 130 ft. as demonstrated in Chapter 2 such that the fabric
forces are not exceeded. It is now important to discuss how
the radius of curvature of an air form may be decreased such
that 30 mil fabric may still be used for large domes.

Suppose now that a dome which is 500 ft. in diameter and
150 ft. tall is going to be constructed using a 30 mil air-

supported form, but without cable nets. The radius of
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curvature for the air form as shown on line 8 of Table 1, and
illustrated in Figure 4, is:

r, = (r* + H*) / (2 * H) (3.1)
= (250 + 150%) / (2 * 150)

= 283 ft.

r, = radius of curvature of the air form, ft.

H = height of the dome, ft.

r = horizontal dome radius at foundation, ft.

From Equation (2.1), the force in the air form fabric, as
shown on line 20 of Table 1, would be:

N = (9.1 % 283) / 2

1l

1290 1b/ft.
= 107 lb/in.

Note that with a force of 107 1b/in., the allowable force
of the air form would be exceeded by 107 / 49 = 2.2 times! 1In
fact, the air pressure used to inflate the air form would have
Lo be reduced to 4 psf to maintain a maximum force of
49 1b/in. in the 30 mil air form (Equation (2.1) was used to
back calculate p). However, because a 1/2 in. thick layer of
concrete weighs just over 6 psf, it is impossible for the air
form to support it with only 4 psf of internal pressure.
Thus, the construction of large domes using air-supported
forming techniques has been inhibited up until the present.

As mentioned before, the cable net system allows the
radius of curvature to decrease between adjacent cables. How

much ‘ballooning out’ of the air form is necessary with the
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radial cable net system such that the fabric forces are
maintained below 49 1b/in.? With some guidance, the answer to
this question is left up to the air-form manufacturer because
it has an infinite number of correct solutions.

Theoretically, any radius of curvature less than 130 ft.
should accomplish the task of maintaining the fabric forces
below 49 1b/in. in a 30 mil fabric. It is recommended,
however, that a factor of safety of at least 2 be utilized in
making this decision. 1In addition, a rule of thumb states
that the dome rise to span should be limited to a ratio of 1:8
because of shell stability considerations such as buckling or
‘caving in’. For large domes, this ratio has been known to
increase to 1:4. This rule of thumb could also be applied to
the portion of the air form that ‘balloons out’ between cables
such that the span is the distance between adjacent cables and
the rise is the distance that the air form ‘balloons out’.
For the 500 by 150 ft. example dome, a radius of curvature of
50 ft. has been chosen for calculation purposes as shown on
line 4 of Table 1. Note that the 50 ft. represents the radius
of curvature of the air form and not that of the cables. With
this new radius of curvature between cables, the force in the
air form fabric, as shown on line 21 of Table 1, is reduced
to:

N = (9.1 * 50) / 2

228 lb/ft.

19 1b/in.
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In Chapter 2, it was mentioned that the radial cable net
included a short circular cable located at the apex of the
dome as shown in Figure 2. The addition of this cable serves
a twofold purpose. First, it aids in increasing the stability
of the dome as discussed in the stability section below.
Second, it helps to maintain a sharp radius of curvature at
the apex to maintain the air form forces below the allowable
values. This cable is designed so that the fabric which is
circumscribed by the cable will ‘balloon out’ forming a
‘small’ dome (hereafter called module) at the apex of the
dome. The air form radius of curvature for this module may be
calculated using Equation (3.1) and substituting the height of
the module for the height ‘of the entire dome and replacing the
horizontal dome radius at the foundation, r, with r,, the
horizontal radius of the circular cable at the dome apex.
Using Equation (3.1), the radius of curvature of the module at
the apex of the 500 by 150 ft. dome is 8.8 ft. as shown on
line 12 of Table 1. The diameter of the circular cable is 14
ft. as shown on line 10 of Table 1. It was calculated in
accordance with criteria established in the section on cable
lengths below. The height of the module, as shown on line 11
of Table 1, was chosen as 3.5 ft. in accordance with the 1:4

rule of thumb discussed above.

ATR FOEM SURFACE AREA
The surface area of the air form that ‘balloons out’ is

very difficult to determine. Not only does the air form
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contain two distinct curvature radii, but the curvature in one
direction 1is wvariable. In the radial or longitudinal
direction, the radius of curvature of the air form is
approximately egual to that of the radial «cables.
Latitudinally, the air form possesses a distinct radius of
curvature that is much sharper. It is this radius of
curvature that is discussed above that must be carefully
selected such that the allowable forces in the air form are
not exceeded.

Given the two distinct curvature radii, it is difficult
to determine just what the surface area of the air form must
be. Therefore, without drawing a three dimensional model on
a computer system to determine the surface area of these dual
curved air forms, only a rough approximation is available.
Fortunately, most air-supported_form manufacturers have the
capability of this type of computer system.

For an approximation of the surface area, it 1is
recommended to start with the surface area of the ’skeleton’
dome which does not include the extra surface area obtained
through the ’ballooning out’ of the fabric. Egquation (3.8},
introduced in the stability section of this chapter, may be
used to calculate such surface area. The surface area of the
air form that ‘balloons out’ between cables could be
calculated by multiplying the ’skeleton’ surface arsa by a
calculated factor. Whether this factor is assumed or a three

dimensional computer model is generated to obtain the surface
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area of the proposed style of domes, the actual surface area

calculation is left up to the air form manufacturer.

CABLE FORCES

The determining of the cable forces is another essential
component of the cable net system. As shown on line 22 of
Table 1, different cable diameters have been selected for each
dome size depending on the forces in the radial cables. Note
that all of the calculations are based on an air pressure
inflation of 1.75 in. of water.

All of the following example calculations will be based

on a concrete dome with the following dimensions and

properties: -
Dome diameter: 500 ft.
Dome Height: 150 ft.
Cable diameter: 1.25 in.

The results of the equations that follow may be compared to
the values shown in Table 1 for a dome of the same dimensions
and properties. Since significant figures are utilized in the
following calculations, the values in the text may not exactly
coincide with those found in the tables.

Before determining the forces in the cables, the total
uplift force on the air form must be calculated. Said uplift
force is the sum of all the vertical components of the air
pressure that act perpendicular to the air form surface as
shown in Figure 5. Therefore, the uplift force is a function

of both the air pressure within the air form and its
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23

vertically projected surface area, i.e. floor area. For a 500

ft. diameter spherical dome, regardless of its height, the

total uplift force on the air form, as shown on line 16 of
Table 1, is:

U =p * pi * r? (3.3)

= {9.1 * 3.14 * (250)*)} * (1/1000)

= 1790 kips
where
U = Total uplift force on the air form, kips.
p = alr pressure used to inflate air form, psf.
r = horizontal dome radius at foundation, ft.

As explained above, the total uplift force acts
vertically upward. By Newton’s 3rd law, there must be an
equal and opposite vertically downward force opposing the
vertically upward one. The downward force is primarily the
weight of the foundation system. Thus, the total weight of
the foundation system, W, should provide the resistance to the
total uplift force, U. If the air form is inflated uniformly,
then the foundation system or ‘ring beam’ should theoretically
resist the total uplift force uniformly around its perimeter.

As shown in Figure 6, the weight of a tributary length of
the ’‘ring beam’, w, between two adjacent cables must be at
least equal to the upward force or tensile force, F, of its
corresponding cable for a hemispherical dome. In the same
manner, the cable force, F, must be equal to the uplift force

associated with a tributary length of ’‘ring beam’, u. For
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example, on line 6 of Table 1, it shows that the arc distance
between cables along the perimeter base of the 500 by 150 ft.
dome is 71.4 ft. This arc distance represents the tributary
length of the ‘ring beam’, w, mentioned above. If the ‘ring
beam’ were 1.5 ft. wide and 2 ft. deep, then the weight of the
tributary length of ‘ring beam’, w, would be 1.5 * 2 * 30.8 *
0.150 = 14 kips, which must be at least equal to the tensile
force, F, in the cable. Therefore, for a hemispherical dome,
the tensile force in each cable may be determined by dividing
the total uplift force on the air form by the number of cables
in the pattern. Likewise, the number of cables required may
be calculated by dividing the total uplift force by the
allowable strength of the cables. Setting the cable force, F,
equal to the weight of the corresponding tributary length of
‘ring beam’, w, is done to illustrate a concept. Note that w
should be somewhat greater than F to ensure that the cable
force never exceeds the foundation weight.

Galvanized multiple-wire strands have been recommended by
air form manufacturers for their use in the proposed cable
nets because of their limited elongation. Table 2 provides
some of the structural properties of the multiple-wire strands
that are accepted by the ASTM A586 Specification. As noted in
the table, the minimum breaking strength of a 1.25 1in.
diameter (19 wire) strand is 96 tons or 192 kips. It is
recommended that a factor of safety of 2 be used when
utilizing these strands in cable nets to account for

variations in air pressure on the air form. As shown in row



*Minimum breaking strengths are
based an furnishing Class B or C zine
coating weights an the outside wires,
with Class A on the inside wires. The
Reavier Class B and C zinc coatings
reduce the steel metallic area, which
acccuntsforthestightlylowerstrengths.

Minimum maduli of elasticity of the
above strands, when prestretened, are
as foilows:

110, to 2¥e-in, diam 24,000,000 psi
2%.in. and larger 23.000,000 gsi
Moduli are based on Ciass “A" cpat-

ing: for neavier coatings, reduce madu-
lus approximately 1,000,000 psi.

MULTIPLE-WIRE STRAND PROPERTIES

Mirimum

Breaking
Strength, tans Metailic
. v Area, Weight
Oiam Class A | *Class B T thasag 1porax per it,
n. Caating Coating . Coating % in, approzx b
Y2 15 14.5 14.2 150 .52
Hs 19 18.4 18.0 .190 .66
% 24 23.3 22.8 234 .82
e 29 28.1 27.5 284 .99
% 34 33.¢ 32.3 338 1.18
s 40 38.8 38.0 396 1.39
¥ LY 448 43.7 .459 1.61
s 54 52.4 51.3 .527 1.8%
i 61 59.2 57.9 .600 2.10
L¥s 69 66.9 635.5 677 2.37
Li4 78 75.7 74.1 759 2.68
1¥s 86 83.4 B81.7 848 2.96
1ia 96 94,1 92.2 938 3.28
1% 106 104 102 1.03 3.62
1% 116 114 111 1.13 3.97
1748 126 123 121 1.24 4.34
1% 138 135 132 1.35 473
13 150 147 144 1.47 5.13
135 182 139 155 1.539 5.55
14, 174 172 169 171 5.98
1% 185 184 180 1.84 5.43
1t#s . 202 198 194 1.87 6.0
1% 216 - 212 207 2.11 7.39
1194 230 226 221 2.25 7.89
2 245 241 238 2.40 8.40
2Y1s 261 257 253 2.55 8.94
244 277 273 263 2.71 9.49
2%s 293 289 284 2.87 10.1
2% 310 305 301 3.04 10.6
2¥5 327 322 317 3.21 11.2
224 344 339 334 3.38 11.8
2%6 360 355 349 3.57 12.5
2% 376 370 365 3.75 13.4
2% 392 386 380 3.94 13.8
2% 417 all 104 4.13 14.5
2'4As 432 425 419 4.33 13.2
24 452 443 438 4.54 15.9
2% 494 436 479 4.56 17.4
3 338 530 522 5.40 18.9
4 384 373 856 5.86 20.5
3 52% 614 806 65.34 22.2
3% 673 653 653 6.83 2319
3t 724 713 702 7.35 25.7
3% 768 756 745 7.88 27.86
33 g22 alo 797 8.43 29.5
i B78 865 852 9.00 1.5
4 325 911 897 9.60 336

TABLE 2
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23 of Table 1, the tensile strength of the 1.25 in. diameter
(19 wire) strand which is used for these cable force
calculations is 192 / 2 = 96 kips. With an uplift force of
1790 kips from Equation (3.3), the number of cables required
is 1790 s 96 = 19 cables. Notice that this does not
correspond to the requirement of 22 cables as shown on line 2
of Table 1. This is because a 500 by 150 ft. dome is not a
true hemisphere.

For a hemispherical dome, the upward force on the
foundation (the tensile force in the cable} is vertically
upward as shown in Figure 6. For domes that are partial
hemispheres, some trigonometry must be used. In order to
determine the true tension in the cablé, one must determine
the angle at which the cable meets the foundation from
vertical. The actual cable force, F, can then be computed by
dividing the uplift force, u, associated with each tributary
length of ’‘ring beam’ by the cosine of the angle theta as
shown in Figure 6. Likewise, the number of cables required
may be determined by dividing the cable force, F, attributed
to each tributary length of ‘ring beam’ by the product of the
cosine of the angle theta and the allowable tensile strength
of the cable. The required angle, theta, for the 500 x 150
ft. dome may be determined from the radius of curvature of the
cables which radius of curvature is equal to that of the air
form calculated as 283 ft. from Equation (3.1).

Both the horizontal radius of the dome and the radius of

curvature of the cables are now known. By trigonometry, the
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sine of the angle alpha, as shown in Figure 6, is equal to the
horizontal dome radius, r, divided by the radius of curvature
of the cables, R. Thus the angle alpha, as shown on line 9 on
Table 1, is:

alpha = SIN*(r / R) (3.4)

= SIN?(250 / 283) '

= 61.9 degrees

= 1.08 radians
By geometry, the complement of the angle alpha is theta, as
shown in Figure 6 and is 90 - 61.9 = 28.1 degrees. The number
of cables required, as shown on 1line 2 of Table 1, is
therefore 19 / COS(28.1) = 22 cables. The actual force in the
cable, as shown on line 18 of Table 1, is 1790 / (22 *

C0S(28.1)) = 92 kips.

CABLE LENGTHS
The individual length of each cable is also an essential
component of the entire system. The cable lengths must be
exact such that they are stiff and fit firm to the air form.
Using arc length principles, these lengths may be calculated
pPrecisely by using the angle alpha as introduced above. The
length of each cable in the example dome will be:
L = R * alpha (3.9)
= 283 % 1.08
= 305 ft.

where R is in ft. and alpha is in radians.
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Notice that this does not correspond to the requirement
of 298.1 ft. of cable as shown in line 15 of Table 1.
Remember that this cable pattern includes a ’small’ diameter
circular cable or ‘ring’ near the apex. The diameter of this
‘ring’ is large enough to facilitate the connection of all the
cables. These connections are covered at the end of Chapter
4. The diameter of the ‘ring’ is such that at least 2 ft. of
circular cable exists between each adjacent incoming radial
cable. This calculation also complies with arc length
principles. For example, as shown on line 7 in Table 1, the
horizontal angle between each cable at the apex of the dome
(or at any height) is 16.4 degrees or 0.29 radians. This is
found by dividing 360 degrees by 22, the number of cables. In
order to obtain an arc length of 2 ft., the radius of the
circular cable must be at least 2 / (0.29) = 7 ft which is
equivalent to a 14 ft. diameter circle as shown on line 10 of
Table 1.

The circular cable will reduce the length of each radial
cable by a few ft. This reduction can alsoc be determined
using arc lengths and trigonometry. The angle beta as shown
in Figure 7, is:

beta = SIN'(r, / R) (3.6)
= SIN*(7 / 283)
= 1.4 degrees
= 0.03 radians
where

R = Radius of curvature of the cable net, ft.
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r, = Horizontal radius of circular cable at apex, ft.
The reduced length of the radial cable is:

1 = R * beta (3.7)

283 * 0.03
= 7 ft.

where R is in ft. and beta is in radians.
The radial cable length is therefore 305 - 7 = 298 ft. and the
total length of cable required for this dome is (298 * 22) +
(pi * 14) = 6,600 ft. as shown on lines 15 and 25 of Table 1,
respectively.

According to Table 2, a 1.25 in. diameter cable weighs
3.28 1b/ft. Therefore, the total weight of the cable is 6,600
* 3.28 * (1 / 1000) = 22 kips as shown on line 26 of Table 1.
At approximately $5.00 per ft. of installed cable, the cable
and required connecfions will add approximately 6,600 * 5 =
$33,000 to the cost of project as shown on line 28 of Table
l. In comparison to a concrete dome which is conventionally
formed without air-supported forms and cable nets, this is a

reasonable cost as demonstrated in Chapter 5.

STABILITY

The stability of the air-supported form has always been
a major concern. These concerns.involve the possible collapse
of the concrete, the steel, or the air form. These failures
could be caused by an insufficient amount or variation of air
pressure within the air form or could be induced by a non-

uniform concrete application. For the purposes of this
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section on stability, only the collapse of the concrete will
be discussed.

As mentioned previously, reinforced concrete weighs just
over 6 psf while an inflation of 1.75 in. of water results in
an outward pressure of 9.1 psf on the air form. The total
weight of cable for the 500 by 150 ft. dome was calculated at
22 kips. This weight can be resolved into psf by determining
the surface area over which the cables cover, It is
conservative to use the surface area of the *skeleton dome’
that is formed by the cable net which does not include the
extra surface area obtained by the ’‘ballooning out’ of the air
form between cables. The surface area, where the angle alpha
is shown on Figure 6, is: -

A = 2 % pi * R® * (1 - coS(alpha)) (3.8)

= 2 * 3.14 * 283* * (1 - COS(1.08))

267,000 sq ft.
where

A

I

Surface area of the skeleton dome, ft>.

R = Radius of curvature of the cable net, ft.
Note that this surface area confirms the value tabulated on
line 19 of Table 1. The weight of the cables is thus
22,000 / 267,000 = 0.08 psf as shown on line 27 of Table 1.
This weight is so insignificant that the air form will not
detect that the cable is there!

Because of the shape of the dome, there will be stress
concentrations in the concrete at the joints (valley’s) where

the cables 1lie. The concrete at these Jjoints must be
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thickened to form ’ribs’ such that these joints act as beams
that are capable of transferring loads to the foundation. The
sizes of these ’‘ribs’ will have to be determined by a finite
element analysis as mentioned in Chapter 1. However, it is
possible to calculate the axial compression in the beans
induced by the ’small’ circular dome at the apex of the air
form.

In the cable length section of this chapter, the diameter
of the circular cable at the apex of a 500 by 150 ft. dome was
calculated as 14 ft. The 1length of this cable or the
perimeter of the circle formed by it is 3.14 * 14 = 44 ft.

Suppose now that the shotcrete is being applied to the
air form and the workers have finally reached the apex and are
in the process of applying a 1/2 in. thick layer of concrete
to the module at the apex. Using fquation (3.4) where r is
replaced with r., the horizontal radius of the circular cable
at the dome apex and R is replaced by R,, the radius of
curvature of the module (8.8 ft.), the new angle alpha for
this module is SIN(7 / 8.8) = 53 degrees. Applying Equation
(3.8) with alpha equal to 53 degrees, the surface area of the
air form within the module is 194 ft2. With a 1/2 in. thick
shell between ‘ribs’, this amounts to approximately 1,200 1b.
of concrete if it is applied uniformly to the air form.

At this point, a thickened concrete rib should be built
up at the joint formed by the air form and the circular cable.
The weight of the concrete at the apex of the dome could be

resolved into a force which is applied along the length of the
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rib, which would be 1,200 / (3.14 % 14) = 27 1b/ft. Since
this force is analogous to a uniform load around a skylight
opening for conventional concrete domes, the ring compression
induced into the edge of the shell may be calculated using
conventional techniques. On page 115 of David P. Billington‘’s
"Thin Shell Structures", second edition, the ring compression,

as shown on line 14 of Table 1, is:

C = R. * P * COS(alpha) (3.9)
= B.8 % 27 * COS(53)
= 145 1b.
where
C = Ring compression on shell at circular ‘rib‘, 1b.
P = Load along perimeter of circula¥ ‘rib-’, 1b/ft.

R, = Radius of curv. of the module at apex, ft.

This compression force is then distributed among all of the
radial ‘ribs’ making it so small that it is very
insignificant.

In short, if the shotcrete is applied uniformly in 1/2"
maximum layers, and if the air form that ‘balloons out’
maintains a minimum ratio of rise to span of 1:4, and the air
pressure is sufficient and continuously monitored, then the

stability of the dome should be sound.

PROBLEMS AND LIMITATIONS
As mentioned briefly in Chapter 2, specific problems with
this cable net pattern have been encountered during the

research. As shown in Figure 5, the air pressure within the
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air form acts perpendicularly to the air form surface. Thus
the pressure that acts on the air form must be transferred to
the nearest cable. The total force per linear ft. that acts
along each cable may be determined by multiplying the
pressure, p, by the tributary width of the air form associated
with a particular cable at a specific location. As shown in
Figure 2, the tributary width of the air form is much greater
at the base of the dome than at the apex. Therefore, a
greater force will be exerted on the lower portions of the
cable causing the desired spherical shape to assume an
elliptical one. This would tend to lower the apex elevation
and increase the radius of curvature at the apex. In fact, as
-the pressure within the air form is increased, the height of
the apex will likely decrease. If this phenomena occurs, then
the purpose of this cable net system is defeated Secause it
would worsen the construction problems as a result of the

increase in air form radius of curvature.
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CHAPTER 4

GEODESIC CABLE NET SYSTEM

In comparison with the radial cable net, the geodesic
pattern is a more practical choice for some air-supported form
manufacturers. Since the cables in the geodesic cable net are
more uniformly spread out over the air form surface, the
forces are more evenly distributed between the cables. The
geodesic cable pattern is also practical because the general
public enjoys the uniqueness of geodesic shapes. As shown in
Figure 3, this cable pattern involves alternating rows of
cables that form hexagonal and pentagonal shapes. Note that
a pentagon is centered about the apex of the dome followed by
a8 row of hexagons, and so forth. This chapter will include
the prfmary elements required to illustrate that this cable
net system can be effectively utilized for large spherical
domes. As with the radial cable system, these elements
include the radius of curvature of the air form, the surface
area of the air form, cable forces, cable lengths and overall
stability. A brief introduction to geodesic geometry will
also be given. This chapter will conclude with a discussion

on cable connections.

RADIUS OF CURVATURE
Unlike the radial cable net system, the radius of
curvature of the geodesic pattern is not so complex. Each

hexagon and pentagon (hereafter called modules) is associated
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with the same radius of curvature in both the latitudinal and
longitudinal directions. As stated in Chapter 2, the air fornm
radius of curvature must be less than 130 ft. in order to
maintain the forces in the fabric and in the welds below the
allowable value of 4% lb/in. for a 30 mil fabric.

It is now convenient to again consider the 500 ft.
diameter by 150 ft. tall dome such that conparisons between
each cable pattern system may be made. Note that on line 3 of
Table 3, the 500 ft. dome was actually analyzed with a height
of 154.5 ft., which height is determined by geodesics as
explained later in the section on geodesic cable lengths.
From Equation (3.1), it was found that the radius of curvature
of the dome’s air form without the use of cable nets is 283
ft. Note that if a cable net system were used, regardless of
which type, the radius of curvature of each cable would also
be 283 ft. Due to the height adjustment, the actual radius of
curvature of the cables for the 500 ft. diameter geodesic dome
is 279.5 ft. as shown on line 5 of Table 3. TIn Chapter 3, it
was shown that without using cable nets, the force in the air
form fabric for such a radius of curvature would be about 107
l1b/in. which is well ahove the allowable force of 49 1b/in.
Again, this demonstrates that the radius of curvature of the
air form must be decreased for large domes. As before, the
decrease in radius of curvature comes about by allowing the
air form to fballoon out’ between the cables, thus forming
modules. The geodesic cable pattern must now be sized such

that the radius of curvature may be defined.
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Recently, recommendations were made by an air form
manufacturer that the modules be sized such that they are
circumscribed by a circle with an approximate diameter of 60
to 70 ft. in order to provide sufficient area for the air form
to ’‘balloon out’, Therefore, all the vertices of each module
(i.e. cable junctions) touch the perimeter of the circle. For
the 500 ft. dome, the air form that ‘balloons out’ within each
module is modeled as a smaller dome with an equivalent
circular base diameter of 72.8 ft., as shown on line 9 of
Table 3. The calculation of this equivalent diameter will be
shown below in the cable lengths section of this chapter. If
the 1:4 ratio of dome rise to span is utilized, then the air
form would theoretically ’balloon out’ approximately 18.2 ft.
perpendicular to the plane of the 72.8 ft. diameter circular
base, as shown on line 10 of Table 3. Using Equation (3.1)
and the circular base approximation, the radius of curvature

of each module, as shown on line 12 of Table 3, 1is

approximately:
r, = (36.4° + 18.2%) / (2 * 18.2)
= 45.5 ft.

With this radius of curvature and using Equation (2.1),
the force in the air form fabric within each module, as shown
on line 13 of Table 5, is approximately:

N = (9.1 * 45.5) / 2

207 1b/ft.

= 17.3 1b/in.
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Notice that both the radius of curvature and the force in the
fabric within each module are both well below the allowables

of 130 ft. and 49 1lb/in., respectively.

AIR FORM SURFACE AREA

Unlike the radial cable net system, the surface area of
each module in the geodesic cable net system is easier to
estimate because of its constant radius of curvature. Aas far
as the procedure is concerned, the surface area within each
hexagon and pentagon will first be determined. This surface
area is then multiplied by the sum of hexagons and pentagons
in the pattern for a particular dome in order to obtain an
approximate total surface area of air form required.

The surface area of each module of the 500 ft. dome may
be approximated by modeling a dome with a circular base
diameter of 72.8 ft. With the use of Eguation (3.4), the
angle alpha for a 72.8 ft. diameter by 18.2 ft. tall dome
(module), as shown on line 11 of Table 3 and in Figure 6, is

approximately:

Il

alpha SIN™(36.4 / 45.5)

53.1 degrees
= 0.93 radians
Now using Equation (3.8), the surface area of this module, as
shown on line 14 of Table 3, is approximately:
A = 2 * 3.14 % 45,5 % (1 — COS5(53.1))

= 5,200 ft:.
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Because of the circular base approximation of each
module, there is an extra portion of the total surface area
included that is bounded by the circle and each polygon. 1In
Plane geometry, the area of a particular hexagon is always
20.9 percent greater than the area of the circle that
circumscribes it. Therefore, the surface area of each module
is closer to 5,200 / 1.209 = 4300 fte, Given the overall
dimensions of the geodesic pattern, the surface area of the
modules should be determined more precisely by using a three
dimensional computer model. Once the total surface area of
each module is determined, then it is simply multiplied by the
total number of modules which will hereafter be determined in

the cable length section of this chapter. -

INTRODUCTION TO CABLE FORCES

The calculation of the cable forces for the geodesic
pattern is more complicated than the radial cable net system.
In order to compare the two proposed cable net systems, the
same cable diameters have been selected for their use in
similarly sized domes as shown in Table 3. Note that all of
the calculations are also based on an air form inflation of
1.75 in. of water pressure.

As with the radial cable system, with the exception of
the height adjustment, the example calculations will be based
on a concrete dome with the following dimensions and

properties:



42

Dome diameter: 500 ft.
Dome Height: 154.5 ft.
Cable diameter: 1.25 in.

The results of the equations that follow may be compared to
the values shown in Table 3 for a dome of the same dimensions
and properties. Since significant figures are utilized in the
following calculations, the values in the text may not exactly
coincide with those found in the tables.

The total uplift force on the air form for this dome is
identical to that of the dome analyzed in Chapter 3 since the
uplift force is a function of the inflation pressure and the
base area of the dome. From Eguation (3.3), this force was
calculated at 1790 kips, also shown on line 7 of Table 3. As
before with the radial cable net system, the tensile force in
each cable may be determined by dividing the total uplift
force on the air form by the number of cables that connect to
the foundation. The number of cables that are fastened to the
foundation depends on the gecdesic geometry of the cable net.
As shown on line 2 of Table 3, the 500 ft. dome contains 30
cables which are fastened to the foundation. Therefore, the
uplift force, u, per tributary width of foundation is 1790 /
30 = 60 kips, as shown on line 8 of Table 3.

In a geodesic cable net, there are two angles that must
be considered when calculating the tensile force in the cable.
Suppose that the cable is located on the North side of the air
form. Looking at the East elevation of the dome, the angle at

which the cable meets the foundation from vertical represents
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the angle theta as discussed in Chapter 3 and shown in
Figure 8. Using Equation (3.4), the angle alpha for this

dome, as shown on line 6 of Table 3, is approximately:

alpha SIN?(250 / 279.5)
= 63.4 degrees
= 1.1 radians

Thus, the angle theta, the complement of alpha which is also
shown in Figure 8, is 90 - 63.4 = 26.6 degrees. Now, looking
directly at the North elevation of the dome, another distinct
angle would be seen. This angle, phi, is also defined as the
angle the cable makes from vertical at the foundation as shown
in Figure 8. It is derived from the nature of geodesics and
will be discussed hereafter. i

The tensile force in the cables, F, at the foundation is
then comﬁuted by dividing the uplift force, u, associated with
a tributary length of the ’ring beam’ between two adjacent
cables by the product of the cosines of each of the angles,
theta and phi. Even though the distance between cables may
vary along the ‘ring beam’, each tributary length of ‘ring
beam’ is approximately equal. In order to determine the
remainder of the cable forces throughout the dome, each cable
connection must be analyzed.

For the geodesic cable net system, each cable connection
consists of the intersection of three cables. Referring to
Figure 8, the angles formed by the intersection of the cables

are the vertices of the hexagons and pentagons (modules) and

vary slightly from point to point due to spherical geometry.
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The variability of the angles will increase or decrease the
forces in some of the cables. Due to the symmetry of the
geodesic geometry, the assumption is made that the variation
in cable forces is small and will be ignored in the
calculations. Since the calculations are based on a minimum
breaking strength that is only half of what the ASTM A586
Specification has approved, the small variation of cable
forces will not overstress the cables. Therefore, the cable
forces tabulated on line 18 of Table 3 are representative of
the cable forces at the foundation.

Before actual calculations can be performed, a short
review of geodesic geometry is necessary followed by the
calculation of cable lengths. Since this introduction is very
brief, it is recommended that the reader research this topic

with the references given in the bibliography.

GEODESIC GEOMETRY

A geodesic frame is a structural system which distributes
loads through a linear arrangement of members placed on the
surface of a sphere. The geodesic sphere can be projected
from five platonic solids, whose vertices 1lie in a
circumscribed sphere. These platonic solids include the
tetrahedron, hexahedron (cube}, octahedron, dodecahedron, and
the icosahedron. Generally, the icosahedron is the basis for
most domes because it best approximates a sphere with its 20

equilateral triangular faces and 12 vertices (see Figure 9).
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Even though the icosahedron best approximates a sphere,
its 20 flat faces would be very noticeable on a 500 ft. dome.
There have been methods developed for reducing the basic
polyhedral form into a larger number of components by
subdividing each of the 20 faces of the icosahedron (hereafter
called the icosa faces) into a three-way grid forming smaller
triangles as shown in Figure 10. All of the new vertices
formed by this grid are pushed outward until they lie on the
surface of the sphere. It is important to maintain a
reasonably symmetrical spacing, so that the small triangles
created will be nearly equilateral. The number of divisions
that are created along the edge of an icosa face determines
the ’frequency’ of the icosahedron. The largest triangle in
Figure 10 that bounds all of the other triangular and
polygonal shapes is a planar represeﬁtation of an icosa face.
Because its edges have been subdivided into 6 parts by grid
lines, the figure represents one face of a 6 frequency
icosahedron. In addition, 9 and 15 frequency icosa faces are
shown in Figures 11 and 12, respectively.

There are several methods of generating three way
geodesic grids. The one which will be utilized for the
geodesic cable net system is commonly referred to as the
Class 1 or Alternate breakdown, Method 1. This breakdown
takes the icosa face and divides its three edges into equal
divisions. Each point of subdivision is then connected with
a line segment parallel to their respective sides thereby

forming a three way grid such that a series of equilateral
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triangles are formed. The grid lines form what are known as
'struts’ in geodesics. As shown in Figure 10, the ’struts’
that correspond to the cables in the cable net pattern are
shown as heavy dashed lines. For a 6 frequency icosahedron,
the only fstrut’ lengths that must be calculated are ’‘struts’
A, D, E, I, and X where I and D are very similar.:

Since Method 1 has been the Class 1 breakdown of choice
for most domes in the past, it was used for the geodesic cable
net pattern. In "Geodesic Math and How To Use It", by Hugh
Kenner, it is stated on pg. 64 that "...by letting the
triangle sizes vary more we can keep their shapes more nearly
constant.® He further states that "the more nearly
equilateral a triangle, the more nearly equilibrated should be
its resistance to pushes and pulls from various directions.”
Method 1 would allow the forces in the air form fabric to be
transferred more uniformly +to the surrounding cables.
Utilizing this breakdown, it is possible to obtain the
necessary lengths of cable that will be required to form the
geodesic cable net. The breakdown provides chord factors
which represent /strut’ lengths on a dome having a 1 ft.
radius. Therefore, once the chord factor is obtained, the
chord length may be calculated by multiplying the chord factor
by the radius of the dome in question. Note that the chord
factor yields the shortest distance between the end points of
the ‘strut’ (its vertices).

In order to obtain the chord factors, some equations have

been developed by using analytical geometry. These equations
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require that all of the intersections of the grid lines or
’strut’ vertices iﬁ an n-frequency icosa face have two sets of
two-dimensional coordinates as shown in Figure 10. For
simplicity, these two sets of coordinates were arbitrarily
given names in this thesis. The face coordinates, (a,b), are
used for describing the locality of chord factors while the
rectangular coordinates, (x,v,z), are used in the following
equations for obtaining the actual chord factors. For the
equations to yield correct results, both sets of two-
dimensional coordinates have to be set up exactly as shown in
Figure 10. With the use of the following equations, these
coordinates will yield three-dimensional or spherical
coordinates which give the 1location of all the fstrut’
vertices on a particular dome. For additional literature on
these coordinate systems, please refer to "Geodesic Math and
How To Use It", by Hugh Kenner, 1976.

Once the face and rectangular coordinates of the n-
frequency icosa face are set up, the rectangular coordinates
(%,v,2) of each ’“strut’ vertex are converted by the following

formulas, obtained from Kenner, pg. 75:

X, = X * SIN(72) (4.1)
Y. = Y + X % C0OS(72) (4.2)
2, = £ / 2+ 2 / (2 *% COS(36)) (4.3)

where f is the frequency of the icosa face.
The spherical icosa coordinates are thus calculated by:
phi = TAN(x, / Vy,) (4.4)

theta

TANT( (%7 + ¥,2)*° / 2)) (4.5)
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where phi resembles a meridian of 1longitude and theta
resembles a specification of latitude, both coordinates in
degrees. All points whose second coordinate, theta, is 90
degrees, lie on the equatorial great circle. With the
exception of these, all points with the same theta l1ie in the
same horizontal plane along which a dome may be truncated such
that it sits flat. WNote that these coordinates are different
than the angles used earlier with the same names. For the 6
frequency icosa face, Table 4 shows how the three sets of
coordinates correlate with each other and with Figure 10.
Tables 5 and 6 correspond to 9 and 15 frequency icosa faces,
respectively.

Now that the spherical coordinates have been determined,
the chord factors for a sphere with a 1 ft. radius may be
determined by the following equation, as set forth by Kenner,
pg. 60:

d = (2 - 2 * ( coS(theta,) * COS(theta,) + COS(phi, -

phi,) * SIN(theta,) * SIN(theta,) ))* (4.86)
where d is the chord factor and theta, is the theta coordinate
of the first point, and so forth. The chord factors for the
6 frequency icosa face are shown at the bottom of Table 4.

As stated above, the icosahedron has 20 identical faces
which have been called icosa faces to this point. For a 6
frequency icosahedron, as shown in Figure 10, it was
determined that only 5 chord factors must be calculated for
determining the cable lengths in the geodesic cable net

pattern. Note that the chord Factors A, D, and I each appear
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Face Coordretes Rectangiar Coordnaizs Convertad Rectanguier Coordiatas Spherical Coordnates Spherical Coordineles
¥ Y r x1 ¥ 3] phi(rad)  theta(rad)  phi(den) theta [deg}
00 o [} ] 0.00000 0.00000 5.70820 0.00000 0.00000 0.000 0.000
10 0 1 5 0.00000 100000 BO9017 0.00000 0 16275 0000 9325
1.1 1 0 5 0.95106 0.30902 609017 125664 0.15275 72000 9,325
20 0 2 4 0.00000 200000 547214 000000 0.35041 0.000 20077
2.1 1 1 4 025106 1 512 547214 0.62032 026749 36000 15472
2,0 0 3 3 000000 300000 4.85410 0.00000 0.55357 0.000 .17
31 1 2 3 0ESI08 2 30002 48540 0.38071 047514 2185 21224
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43 3 1 2 208317 1.92705 423507 097877 D.68248 55.065 39.103
44 4 0 2 380473 1.23607 4.23507 1.25654 0.75674 72000 43.358
50 0 5 [ 006000 5,00000 3.61803 0.00000 0.94440 0.000 54.110
51 1 4 i 0.35106 4,30902 3.61803 021723 0180403 12448 50.651
52 2 1 1 1.90211 351803 361803 D.AB402 048 27732 A8 487
53 3 2 1 285317 257705 261603 0.77262 0 B4E26 44768 aB 487
54 4 1 1 380423 273507 361803 103941 0 ALY 59554 50651
55 5 0 1 4.75528 1.54508 251803 1.25664 054440 72000 54.110
60 1] 6 ] 0.00000 5.00000 3.00000 0.00000 1.10715 0.000 63435
63 1 5 0 0.95106 5.30002 300000 [Risr. 1.06318 10.156 60916
62 2 4 0 1.90211 465802 3.00000 €.39071 1.02988 22386 59.008
52 3 3 0 265317 392705 300000 052832 101722 36000 58283
64 4 2 0 380423 373607 300000 0.85552 102988 a3g1d 59008
65 5 1 0 475528 254508 300000 1.07938 108315 B1 044 60318
66 3 [0 0 570634 1.85410 3.00000 1.25664 110715 200 53435
6.1y 1 5 [} 095106 530902 1.00000 017726 1107115 10156 B3.435
62y 2 4 0 190211 451803 3.00000 039071 1.10715 22386 53435
(6.3F 3 k] [ 285317 2192705 300000 052832 1.10715 36.000 £3.435
B.4) 4 2 ¢ 380423 323607 3.00000 036592 110715 49614 63435
(esy 5 1 0 475528 254508 3.00000 107938 190715 B1.B44 53.435
Chord Fackers Arc Lenghs Distanca betwean cables slong base
00/10 J 0.162567 0.162747 24.41
1001, A 0.190477 0.190768
10420 K 0.187383 0.187659 2815
10121 G 0.181908 0.t82150
20124 B 0.202820 0.203189
20430 L 0.20282¢ 0203169 3048
2003 E 0.190013 0.158338
2113 H 0.205908 0206273 _
30729 c 0.205908 0.206273
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31744 t 021535 0215772
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534(64Y e 02712 0271958
6.5 /{6.5) K 0158338 0.158504 a7
(B5/B4Y K 0.190556 0.190845 2083
(6476,3Y L 0212022 0212421
(BAJ62Y L 0.242022 0.212421
(BA7B2) a 0.421054 424228 <]
(5,216,3Y c 0.205908 0.205273
(pH) Face ange | 4“8 dapress
{pHl) Face ange ¢ 142 degse
[phi) Faca angis ! 2076 degress

CHORD FACTORS 6-FREQUENCY ICOSAHEDRON (Class I, Method [)

TABLE 4
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X b H x1 ¥yl 21 phi (red) et (rad)
0o 1] 0 9 0.00000 0.00000 10.06231 0.00000 0.00000
10 0 1 [ 0.00000 1.00000 9 44427 0.00000 0.10549
11 1 0 [ 085106 0.30002 0.44427 1.25654 0.10548
20 0 2 7 0.00000 2 00000 B.A2624 0.00000 027283
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40 0 4 5 £.00000 4.0D000 7.58017 0.00000 048501
41 1 3 5 0.95106 2.300072 758017 0.21387 0.42585
42 2 2 5 1021 251803 759017 0.62832 040301
50 0 5 4 000000 5 00000 697214 0.00000 0.62214
5.1 1 4 4 510 4.30902 97214 021722 0.56427
32 2 3 A 1.80211 asiens 8497214 0.48402 0.53028
53 3 2 1 285317 292705 897214 0.77262 0.53026
6.2 2 4 3 1.90211 46180 8.35410 0.39071 058516
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9.0 0 ] 0 0.00000 9.00000 450000 0.00000 1.10715
.1 1 8 0 0.98106 8.36902 4.50000 0.11286 107716
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93 3 [ 0 285317 832705 4.50000 0.39071 1.02088
9.4 4 5 0 380423 & 30607 4.50000 054777 1.01867
9.5 5 i 1] 4.75528 5 54508 4.50000 0.70887 1.01857
(9.00 a E) [ 0.00000 00000 450000 0.00000 118715
8.1} 1 B o 0.95106 B.30902 4.50000 011396 110715
8.2y 2 7 [} 190241 7.61803 4.50000 D.24458 110715
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Chord Faciers Are Lengths Distance betwaan cables slong bass
10411 A 0B 012282
10120 K 072ITE 0.117343
20431 E 0422287 0122344
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31 1 0135063 0.136068
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40150 Q 437018 pi3TI26
41182 T 0125880 [ 1 e0008
52/53 w 0145455 [ 145584
52/62 Y 0 145455 0145584
8O/ 1Y A 0.144544 0144671
827192y C 0.177815 0178050
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(n2493y E 0.188847 0.199176
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(o) Face engle it 2322 degrees

phi {deq)

40615

Coordinates
thets (deg)

0.000

6.044

5044
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10382
20077
16922
16922
27788
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38,158
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57,381
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52115
51 664
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CHORD FACTORS 9-FREQUENCY ICOSAHEDRON (Class |, Method I)
TABLE 5
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Cherd Factors At Langths Distance betwwen cables skng bave
10419 A e ] 0078
1.0/20 .} DL opest
FL TR | c D.OETE00 0.0y
A132 b Q07T 007TTAd
EARLS E Q0TS 0.07TINS
40741 F D.GTERNS anTeons
40750 <} oorreyt o.07rear
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CHORD FACTORS 15-FREQUENCY ICOSAHEDRON (Class |
TABLE 6
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3 times in the icosa face and the chord factors E and K each
occur 6 times in each icosa face. The set of 5 chord factors
is repeated 20 times on an icosahedran which amounts to one
set for each face. However, for a dome, only a few of the
icosahedron faces are actually utilized.

The number of icosa faces which are utilized depends on
the angle alpha which is shown in the East Elevation of Figure
8. If a hemispherically shaped dome is built using a geodesic
cable net, then a combination of 5 complete or whole icosa
faces and 10 partial or truncated icosa faces will be used to
describe its shape. The geometry associated with this
statement will be shown later. The 5 whole icosa faces which
symmetrically surround the apex of the dome will hereafter be
referred to as the icoscap as shown in Figure 13 for a 16
fregquency ichahedron, courtesy of "Domebook 2", by Lloyd Kahn
and others. Note that the cables in the geodesic cable net
will form pentagon shapes at the 30 icosahedron vertices and
will form hexagons elsewhere. A common soccer ball could be
classified as a 3 frequency icosahedron, but its ‘struts’
follow the surface of a sphere instead of being linear.

Below each of the 5 icosa faces in the icoscap, there is
an inverted icosa face which contains the same chord factors
as the icosa faces within the icoscap. Adjacent to the
inverted icosa face, an upright icosa face is situated at the
same latitude on both sides as shown in Figure 14 for a 6
frequency icosahedron. The icosa triangle #1 represents one

of the icosa faces in the icoscap. The icosa triangle #2
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represents the inverted icosa face while icosa triangle #3
represents the icosa face adjacent to icosa triangle #2. The
arrows at the right edge of the icosa triangles in Figure 14
represent truncation planes where the icosahedron may be cut
such that the dome will sit flat on a foundation.

The easiest truncation plane to use is the equatorial
line at theta = 90 degrees bhecause all of the grid line
vertices along that line have a theta coordinate of 90
degrees, meaning that all the vertices 1lie in the same

horizontal plane. The vertices along any other truncation

_Plane do not contain matching theta coordinates. For example,

in Table 4, the theta coordinates for the ‘arctan 2’
truncation plane which includes grid line vertices 6,0 through
6,6 (see Figure 14} vary from 63.4 degrees to 58.3 degrees.
As shown later, the solution to a flat foundation is to alter
the geodesic geometry by forcing the theta coordinate of such
vertices to correspond with each other. Generally, the outer
vertices (6,0 and 6,6) are held constant and the interior
vertices are adjusted in order to lessen the mathematics
involved. Notice that the truncation plane that corresponds
to the theta coordinate of 63.4 degrees will always occur at
the base of the icosa triangle #1, i.e. at the base of the
icoscap.

With this introduction to geodesic geometry, cable
lengths will be discussed next followed by calculations of

cable forces.
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CABLE LENGTHS

Similar to the radial cable net system, the individual
length of each cable is an essential component of the entire
system. The cable lengths must be exact such that they are
stiff and fit firm to the air form. Using arc length
principles, these lengths may be calculated precisely by using
the central angle of a ’‘strut’. The central angle is formed
by two radii of the icosahedron passing through the end points
of the ’strut’ and may be measured at the radius or central
point of the icosahedron.

It is now convenient to again consider the 500 ft. dome
such that comparisons between each cable net system may be
made. As shown on 1line 4 of Table 3, a 9 frequency
icosahedron was selected for the geometry of the 500 ft. dome
geodesic cable net. The frequency was selected such that the
cable lengths were approximately 30 to 35 ft. As mentioned
above in the section on radius of curvature of this chapter,
the 30 to 35 ft. cable lengths comply with the recent
recommendations made by an air form manufacturer that the
hexagons and pentagons be sized such that they are
circumscribed by a circle with an approximate diameter of &0
to 70 ft. in order to allow sufficient area for the modules to
‘balloon out’. 1In order for the cables to align correctly
between adjacent icosa faces, only the icosahedron fregquencies
which are multiples of three will work as geodesic cable nets.

As shown in Figure 11 by the heavy dashed lines, the

chord factors which must be calculated for the 9 frequency
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icosahedron are labeled as A, D, I, E, K, ¢, Q, T, Wand Y.
Some of these chord factors are equal to each other as shown
at the bottom of Table 5. For simplification, only the chord
factor A near the top of the icosa face will be utilized for
sample calculations. As shown in Figure 11, the chord factor
A appears near each vertex of the icosa face and forms one
side of the pentagon shape that occurs at such vertices. 1If
the left end of chord factor A is arbitrarily designated as
the first end point, then the face coordinates and the
rectangular coordinates of the first point are (1,0) and
(0,1,8), respectively (see Figure 11). Likewise, the face
coordinates and rectangular coordinates of the second point
are (1,1) and (1,0,8}, respectively. Using Equations (4.1),
(4.2), and (4.3), the converted rectangular coordinates for

the first point, as shown in Table 5, are:

X, X * SIN(72)

= 0 * SIN(72)

Y: = Y + X * COS(72)

= 1+ 0 * COS(72)

z, = £/ 2+ 2/ (2% C0oS(36))
9 / 2+ 8/ (2 % COS(36))
9.44
Likewise, the converted rectangular coordinates for the second
point are (x,,v¥,,2,) = (0.951, 0.309, 9.44) as shown in Table

5.
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The spherical icosa coordinates for the first point may
now be calculated by using Equations (4.4) and (4.5):

phi, = TaN*(x, / y.)

Il

TAN(O0 / 1)
= 0 degrees
theta, = TANY( (%2 + y,2)° / 2,)
=  TAN?( (0* + 1%*) / 9.44)
= 6.04 degrees
Likewise, the spherical coordinates, in degrees, for the
second point are (phi,,theta,) = (72, 6.04) as shown in Table
5.

With the spherical coordinates of each end point of chord
factor A and using Equation {4.6), the actual chord factor A,
as shown at the bottom of Table 5, is.

d = (2 - 2 * ( COS(theta,) * COS(theta,) + COS(phi, -

phi,) * SIN(theta,) * SIN(theta,) ))**

= (2 - 2 % ( COS(6.04) * COS(6.04) + COS(0 - 72) *
SIN(6.04) * SIN(6.04) ))°

= 0.124

Since this chord factor represents the ‘strut’ length for
a dome or a sphere with a 1 ft. radius, the actual ‘strut’
length A is 250 * 0.124 = 31 ft. Since the cable is designed
to follow the radius of curvature of the air form fabric, the
‘strut’ length must be converted to an arc length by using the
central angle. By trigonometry, the central angle, delta, is
calculated by the following equation:

delta = 2 * SIN*(d/2) (4.7)
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where d is the chord factor.
If chord factor A is equal to 0.124, then the angle delta from
Equation (4.7) is:

delta = 2 * SIN'(0.124/2)

7.11 degrees
= 0.124 radians

Now, by arc length principles, the arc length associated with
chord factor A is 0.124 % 250 = 31 ft. as shown on line 5 of
Table 7. Notice that the difference between the ’strut’
length and the arc length is insignificant due to the large
radius of curvature of the dome. The remainder of the arc
lengths associated with each chord factor in a 9 frequency 500
ft. dome are also tabulated on line 5 of Table 7. )

Referring to line 6 of Table 3, the angle alpha (see
Figure 8) fof this dome is 63.4 degrees which represents both
the coordinate theta and the truncation plane. Since the
selected truncation plane occurs at 63.4 degrees, only the 5
icosa faces within the icoscap will be included in the dome
geometry. Note in Figure 11 that the truncation plane
involves grid line vertices 9,0 through 9,9. Since the theta
coordinates of these grid line vertices are not all egqual, the
theta coordinate for vertices 9,1 through 9,8 will be adjusted
to that of vertices 9,0 and 9,9 which is 63.4 degrees.
Referring to Figure 11, the cable lengths which will be
altered correspond to the chord factors A, C, and O. These
adjusted chord factors are designated as A’, C’, and O’ and

are also tabulated at the bottom of Table 5. Adjusted chord
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factors for chord factors J, K, L, M, and Q are also tabulated
at the bottom of Table 5. They represent various distances
along the foundation of the dome between the cables.

The number of whole cables that correspond to each chord
factor in a 9 frequency icosa face are tabulated on line 7 of
Table 7. Whole cables signify those that are not adjusted.
Note that on line 7, there is only 1 whole cable associated
with chord factor A per icosa face which comes out to 5 whole
cables in the icoscap. The other two cables associated with
chord factor A in each icosa face have been adjusted to the
length specified on line 13 of Table 7. Notice that cable A’
is over 6 ft. longer than cable A. As shown on line 14, there
are a total of 10 adjusted cables associated with chord factor
A within the icoscap. Therefore, the total length of cable A
and cable A’ combined is 31.0 * 5 + 36.2 * 10 = 517 ft. Note
that this length does not account for cable connections and
elastic elongation. Once the connectors are sized, the
necessary reductions in cable 1lengths should be made
accordingly. The lengths of the remainder of the cables in
the cable net are calculated similarly. Note that the total
length of cable for a 9 frequency 500 ft. dome is just under
7400 ft. as shown on line 21 of Table 3. The reader may
verify this length using Table 7. At $5.00 per ft. of
installed cable, this length of cable with its required
connections would cost approximately $40,000, as shown on line

24 of Table 3. Notice that the geodesic cable net provides a
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very efficient use of cables for the 600 and 800 ft. domes in
comparison to the radial cable net for the same domes.

At the beginning of this chapter, the height of the 500
ft. dome was given along with the radius of curvature of the
cable net. Following are some calculations that verify the
values previously given. As mentioned earlier, the truncation
plane for the 500 ft. dome was selected to be 63.4 degrees
based on the geodesic configuration of the cable net. The
selected truncation plane dictates the height of the finished
dome. Since the theta coordinate of the truncation plane
corresponds to the angle alpha shown in Figure 8, the radius
of curvature may be calculated by dividing the horizontal dome
radius, r, by the sine of the angle alpha. Therefore, the
radius of curvature of the cable net for the 500 ft. dome, as
tabulated on line 5 of Table 3, is approximately:

R

250 / SIN(63.4)
= 280 ft.
Equation (3.1) is then used to solve for the height of
the dome, H, where R is used in lieu of r,. The result gives

a dome height of 155 ft. as tabulated on line 3 of Table 3.

CALCULATION OF CABLE FORCES

Now that a review of geodesic geometry has transpired, it
is possible to calculate the cable forces for the 500 ft.
dome. As shown in Figure 11, there are 6 cables in each icosa
face that connect to the domes foundation at the 63.4 degree

truncation plane. With 5 icosa faces in the icoscap, the
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total number of cables that connect to the ’ring beam’ is 30,
as shown on line 2 of Table 3. In the section on cable forces
in this chapter, the total uplift force on the dome, U, and
the angle theta, as shown in Figure 8, were calculated as 1790
kips and 26.6 degrees, respectively. The second angle, phi,
also shown in Figure 8, is derived from the nature of geodesic
geometry. The angle phi, more commonly known as a ‘face
angle’ in geodesics, represents the angle formed by the grid
lines or ‘struts’ that divide the icosa face into particular
frequencies. These angles may be determined by the law of
cosines where the sides of the triangles (formed by the grid
lines) are simply the chord factors that bound the faces. The
reader may refer to Chapter 19 of "Geodesic Math and How to

Use It", by Hugh Kenner for additional information on face

"angles.

The angle phi will vary from cable to cable, but only
that angle associated with the adjusted chord factor A will be
calculated here. In fact, the various phi angles for the
adjusted cables at the foundation are tabulated at the bottom
of Tables 4, 5, and 6 for 6, 9, and 15 frequency icosahedrons,
respectively. As shown in Figure 11, the angle phi for chord
factor A is the complement of the angle, j, that is described
by the face coordinates 8,0, 9,1, and 9,0. The angle, i,
corresponds to the angle gamma shown in Figure 8. The chord
factors bounding this triangular face are a’, J’, and J/ and
the corresponding face angles are a’, j’, and j’. Since these

are adjusted chord factors, the adjusted angle j’ must be
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calculated. Using the law of cosines, this angle, as shown on
Table 7, is:

37 = COS( (T + AfE - J72) 7 (2 x T k A') ) (4.8)

Il

COS™( ((0.1445)*) / (2 * 0.1019 * 0.1445) )

= 44.8 degrees.
Since the angle phi is the complement of the angle gamma, phi
is 90 - 44.8 = 45.2 degrees. Note that this angle is quite
extreme compared to the other phi angles at the base of the 9
frequency icosa face as shown at the bottom of Table 5.

The cable force, F, as shown on line 17 of Table 3, is

therefore:
F = U/ ( NC * CcOS(alpha) * COS(phi) ) (4.9)
B = 1790 / ( 30 * COS(26.6) * COS(45.2) )
= 95 kips
where
U = Total uplift force on air form, kips.
NC = Number of cables required at foundation.

Just before the review of geodesic geometry, it was
stated that the variability of the face angles throughout the
dome will increase or decrease the forces in some of the
cables. To account for this, a detailed study of each cable
joint should be conducted to obtain the necessary angles for
cable force calculations. The cable forces for the rest of
the domes shown on line 17 of Table 3 are base on the maximum
angle of phi as tabulated at the bottom of Tables 4, 5, and 6

for 6, 9, and 15 frequency icosahedrons, respectively.
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An additional method may be used to approximate the
forces in the cables for the geodesic cable net. This method
involves a direct calculation of the cable forces for any
cable throughout the cable net by using the same principle
that Equation (2.1) is based upon. To utilize the equation
correctly, substitute the cable force, F, in lieu of N, and
replace the air form radius of curvature, r,, with the cable
radius of curvature, R, which was calculated as 279.5 ft. 1In
addition, the air pressure, p, is modified such that it
accounts for a tributary width of module upon which the air
pressure is being applied. The tributary width of module is
basically a one foot wide strip which continues
perpendicularly from the cable to a point midway between the
cable and the apex of each adjacent module. This érea
represents fhe amount of load that the cable experiences
within one foot of length.

As stated in the section on air form surface areas of
this chapter, the surface area of each module in the 500 ft.
dome may be approximated by modeling a dome with a circular
base diameter of 72.8 ft. This diameter represents a circle
that is circumscribed about the center most hexagon (module)
in the 9 frequency icosa face, which represents the largest
module on the dome. As shown in Figure 11, the module is
bounded by chord factors W and Y. The corresponding chord
lengths on a 500 ft. dome are both 36.4 ft. as shown on line

5 of Table 7.
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Previously, the surface area of this module was
determined to be approximately 4300 f£t?. The tributary loaded
area per module associated with each cable consists of a
triangle bounded by grid 1lines within the hexagon shape.
Since the grid lines form 6 triangles or faces within the
hexagon shaped module, each cable has a tributary width of air
form equal to 4300 / 6 = 720 ft® within each module. When
this surface area is divided by the length of the cable, then
the result represents the tributary width of loaded air form
per module measured perpendicular to the cable. The tributary
width associated with each module is thus 720 / 36.4 = 19.8
ft. Since each cable is bounded by two modules, the tributary
width of air form associated with each cable is 19.8 * 2 =
39.6 ft.

By implementing Equation (2.1) with the aforementioned
substitutions, The force in cable W on the 500 ft. dome is
therefore:

F = (9.1 * 39.6 % 279.5) / 2

= 50.4 kips

This force may be compared to the uplift force, u,
associated with a tributary length of ‘ring beam’ between
cables at the foundation. As shown in Figure 6, the cable
force, F, is equal to u for hemispherical domes. For the 500
ft. dome, the uplift force, u, was calculated at 59.5 kips as
shown on line 8 of Table 3. Note that the tributary width
method which yielded the 50.4 kip cable force seems to produce

lower values. It is a more approximate method since the air
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form surface areas were estimated. Since the cable forces are
higher using the uplift method, they are used in all of the
spreadsheet calculations. It is recommended that a small
dome, say 50 ft. in diameter, be constructed using cable nets
such that the cable forces may be measured and compared with

those given in Table 3.

STABILITY

The stability of the air-supported form for the geodesic
cable net system is much superior than that of the radial
cable net system due to the equivalent radius of curvature of
each of the cables in the geodesic pattern. This equivalence
in cable radius of curvature is derived from the similarity in
size and shape of the modules. The more similar the modules,
the more uniformly distributed is the internal pressure
amongst the cables. With this similarity in shape and size,
it may be possible to isolate one of these shapes (modules)
and analyze it as a ‘smaller’ dome with a polygonal ‘ring’
beam. In contrast, the radial cable net system did not
provide a uniform distribution of internal pressure to the
cables, thus inducing a very large radius of curvature at the
apex of the air form as discussed at the end of Chapter 3.
However, other stability concerns induced by insufficient
amounts of or wvariations of air pressure within the air form
or non-uniform concrete application still remain significant

for the geodesic cable net system.
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As with the radial «cable net system, stress
concentrations will exist in the concrete below the geodesic
cables where the air form experiences an abrupt change of
radius of curvature. These ’joints’ or valley’s must be
thickened such that they act as ‘ring beans’ for each of the
modules formed by the ‘ballooning out’ of the air form within
the pentagon and hexagon patterns and as ’‘ribs’ for the
complete geodesic dome. Again, the sizes of these 'ribs’ will
have to be determined by a finite element analysis as
mentioned in Chapter 1.

As concluded in Chapter 3, the compression in the ‘ribs’
as well as the cable weights on the air form are small. After
the ’‘ribs’ are in place, the modules can be constructed. If
the shotcrete is applied uniformly in 1/2 in. maximum layers,
and if the air form that ‘balloons out’ maintains a minimum
ratio of rise to span of 1:4, and the air pressure is
sufficient and continuously monitored, then the stability of
the dome during construction should be adequate. The long
term stability of the dome is left for the actual structural

design.

CABLE CONNECTIONS

The connection of the cables to each other and to the
foundation is left to the air form manufacturer. However, a
few recommendations on these connections are made. For cable
to cable connections, a three-way pre-manufactured splice

chuck that is field attached could be a feasible solution.
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However, the angles formed by the intersection of the cables
may vary from connection to connection, making it difficult to
use a typical splice chuck with different cable
configurations.

Another alternative for cable to cable connections is the
use of circular steel rings at the cable junctions. Pre-
manufactured clevises or turnbuckles may be used to connect
the cables to the steel rings. To complete the connection,
the cables would have to be threaded at the each end. At the
foundation, eye hooks may be embedded intc the concrete 'ring
beam’ to a depth sufficient to resist the uplift forces.
Again, a clevis may be used to connect the cable to the eye
hook.

In addition to the cable connections, it is imperative
that the cables be connected to the air form at the cable
Junctions as well as at particular increments along the length
of each cable. At the cable junctions, a premolded plastic
shoe may be attached to the air form, as shown in Figure 17,
such that stress concentrations in the fabric are prevented.
Between the cable junctions, additional plastic shoes or
"keepers’ may be attached to the air form so that the cables
maintain their relative position with respect to the air form.

In conclusion, the actual connections are left to the air
form manufacturer even though some suggestions have been made.
It is imperative, however, that the connections are capable of

resisting the tensile forces in the cables.
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CHAPTER 5

CONCLUSTIONS

Recently, there has been an interest to build large
concrete domes in excess of 300 ft. in diameter.
Unfortunately, the air-supported forming system has placed an
upper limit on the size of a thin shell concrete dome that can
be safely constructed. By shortening the air form’s radius of
curvature with the use of cable nets, this thesis has provided
a solution whereby air-supported forms may be used for such
large concrete domes. Even though some of the research proved
that the radial cable net system would not provide a wvalid
solution to the proposed problem, it was presented so that its
limiéations were not overlooked by an interested air-form
manufacturer or contractor.

Many of the solutions presented in this thesis are
theoretical. Since the air form fabric behaves differently
from one size of dome to another, small scale models or
prototypes of the proposed style of domes were not considered.
Hence, there will likely be a certain hesitancy in applying
the solutions that are proposed in this thesis. For this
reason, it is highly recommended that a 50 ft. diameter dome
be constructed first such that comparisons may be made between
the cable forces presented here and those on an actual dome.
A 300 ft. diameter dome should then be built in order to
measure the air form stresses within the modules. Other

values that should be verified include cable lengths, cable
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forces, radius of curvature values as well as the overall cost
of the project.

The overall cost of a dome project using air-supported
forms is very efficient. Recently, an air form manufacturer
suggested that the total cost of building a 500 ft. dome such
as the one analyzed in Chapter 4, would be about $10 million.
This may seem like a lot of money, but when comparing it to
the cost of some of the traditionally formed domes of the
past, the cost of building a dome using air-supported forms
and cable nets is very reascnable. For example, the Kingdome,
a 650 ft. diameter thin shell concrete dome built in Seattle,
Washington during the mid 1970’s, cost a total of $58.2
million according to reference 7 on page 344 of "Thin Shell -
Concrete Structures", by David Billington. Neglecting the
time value of money, the proposed 500 ft. dome would only cost
a sixth of what it cost to build the Kingdome. The economy of
the air-supported forming techniques is so superior that it
has warranted the need to build large domes using air-
supported form techniques.

In conclusion, it is recommended that a finite element
analysis be developed soccon such that the structural behavior
of the domes presented in this thesis may be determined. The
finite element analysis should give more precise results on
such items as stabiltiy, cable forces, and air form surface
areas. The structural analysis will be imperative in

confirming the conclusions that have been drawn.



