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A FINITE ELEMENT ANALYSIS

OF THE MONOLITHIC DOME
Thesis Abstract—Idaho State University (2005)

Four of the major influences in the history of thin-shell structures are discussed. David
B. South and his brothers, Barry and Randy South, are presented as the inventors of the
Monolithic Dome. Monolithic Domes are thin-shell structures constructed by applying
polyurethane foam to the interior surface of an airform followed by attaching rebar to the
foam. About three inches of shotcrete is then sprayed onto the interior surface. Basic
stress resultants are developed from membrane theory as presented by David P.
Billington. The finite element analysis process (FEA) is discussed as well as an
introduction to NE/NASTRAN, a finite element analysis program. Comparisons of stress
resultants between shell theory and FEA are made for a hemispherical dome, a truncated,
hemispherical dome, and a non-hemispherical dome. Shell theory for domes, rings and
wall interactions is introduced to facilitate a comparison between theory and FEA for the
dome-ring-wall problem. Finally, a finite element buckling analysis is presented for a
non-hemispherical, truncated dome with a tower. The current design practice utilizes
shell theory. The finite element analysis process was found to be very accurate when
compared with shell theory results and more powerful when complicated problems were

presented.
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Chapter 1

AN INTRODUCTION TO THE HISTORY OF THIN-SHELL DOME
STRUCTURES IN THE U.S. AND MONOLITHIC DOMES

In the history of thin-shell structures, four of the major influences are: Anton
Tedesko (1903-1994), who is attributed with much of the success of thin-shell structures
in the U.S; Pier Luigi Nervi (1891-1979), who in Italy gave structural integrity to the
complex curves and geometry of reinforced-concrete structures such as the Orbetello
aircraft hangar (begun 1938) and Turin's exposition hall (1948-50); and the Spaniard
Eduardo Torroja (1891-1961) and his pupil Felix Candela (1910-1997) who followed his
lead. Essentially, each of the latter three attempted to create an umbrella roof the interior
space of which could be subdivided as required, such as Torroja's grandstand for the
Zarzuela racetrack in Madrid (1935) (16).

The Monolithic Dome, as examined in this thesis, can be attributed to David B.
South (1939-). David B. South, president of the Monolithic Dome Institute, and his
brothers - Barry and Randy South - developed an efficient method for building a strong
dome using a continuous spray-in-place process. In 1976, after years of planning and
development they built the first Monolithic Dome in Shelley, Idaho (18).

Anton Tedesko (1903-1994)

Tedesko’s contribution to the history of thin-shell dome structures in the United
States began in Germany. During the early twentieth century, planetariums became very
popular in Europe and the U.S. The Carl Zeiss Company of Germany was one of the
leading manufacturers of the machinery that produced the sky shows. The problem in the
early 1900’°s was that the quality of the space used for viewing rarely matched the quality

of the projector. Thus, The Carl Zeiss Company sought a high-quality dome design that



could be produced efficiently. Zeiss hired engineers, Dyckerhoff and Widmann, who
created the solution known as the “Zeiss Dywidag System.” This system was patented in
the U.S. and licensed to the Roberts & Schaefer Company in Chicago, which employed
the structural engineer, Anton Tedesko, who had worked with Zeiss in Europe (2).

The introduction and success of thin-shell structures in the United States is
attributed to Anton Tedesko, according to Hines and Billington. They assert that
Tedesko’s introduction of thin concrete shells in the U.S. is captured in the story of three
structures: a hemispherical dome (Hayden Planetarium), a small set of long barrels
(Brook Hill Farm Dairy Exhibit at the 1933 “Century of Progress” World's Fair in
Chicago, Illinois using the Z-D system), and a large wide-spanning, short barrel roof
(Hershey Sports Arena). All were built within three years of each other.

Hines and Billington say that Tedesko succeeded in arranging that the Hayden
Planetarium be the first full-scale American thin concrete shell, see Figure 1-1. He
insisted that the dome be built on more traditional falsework than on the Zeiss network
from Germany. Tedesko served as the principal advisor to the Weiskopf and Pickworth

engineers, to whom he gave copious amounts of calculations as guidelines.

Figure 1-1 - The front entrance
g to the original Hayden
Planetarium on West 81% Street

in New York City (2).
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For the World’s Fair in 1933, Tedesko failed to obtain the contract for theGerman
Pavilion but did get the stalls for Brook Hill Farm’s dairy exhibit. Since the Brook Hill
stalls were temporary, Tedesko tested them under ultimate loads before taking them
down after the Fair. Thus, Roberts and Schaefer published the first load tests carried out
on barrel shells in the United States (Hines and Billington).

A memorial tribute in the National Academy of Engineering journal says that the
Depression slowed the progress of thin shell construction. There were many designs and
few built structures. One of the first major breakthroughs was when the Hershey
Chocolate Company wanted to build a shell structure for a sports arena. According to the
Hershey Community Archives, Mr. Hershey had asked D. Paul Witmer, manager of the
Hershey Lumber Company to solicit plans for a new building. Through a contact with
the Portland Cement Company, Witmer was put in touch with Anton Tedesko. On
January 21, 1936, Tedesko presented his idea for a huge arena to Mr. Witmer, who then
presented it to Milton Hershey. After some initial skepticism, Mr. Hershey became
excited by the innovation and gave his approval. Ground was broken on March 11, 1936.

The Archives state that the Sports Arena is composed of a barrel vault roof—the
Zeiss-Dywidag type. The concrete shell is 3.5 in. thick at the uppermost part, and is
stiffened at 39 foot intervals by massive two-hinged arch ribs. The roof crown is 100 feet
above the floor. The shell was constructed as five separate units, with expansion joints
between units. The journal from the National Academy of Engineering states that
Tedesko established his own rules for the design and construction which were later
adopted by the industry. According to the Hershey archives, when it opened on

December 19, 1936, the Hershey Arena was the first large scale barrel shell roof structure



in the U.S. (See Figure 1-2). Its construction established Anton Tedesko as the

preeminent engineer for such structures.

Figure 1-2 — Hershey Arena

Under Construction (4).

Publicity from the Hershey Arena opened the door for other shell structures and
during World War I, Tedesko was the manager of the Roberts and Schaefer office in
Washington, where, according to the National Academy of Engineering, the Army, Navy,

and Air Force had many shells designed for their installations.

Pier Luigi Nervi (1891 — 1979)

Pier Luigi Nervi also influenced the development of thin-shell structures in the
United States. According to Sara Askari (5), Nervi was born in the town of Sondrio in
the Italian Alps. He attended the University of Bologna and joined the army engineering
corps and a group called “The Society for Concrete Construction” following World War
[. It was not until after he left the group in 1923 that his unique approach to building
garnered critical attention. In 1926-27 he designed the Cinema Augusteo in Naples, and
two years later he began work on the Municipal Stadium in Florence. Between 1935 and
1943 Nervi dedicated himself to studies of the covering construction of very big
dimensions. Figure 1-3 shows an example of this work in the cover of the hall in Palazzo

delle Esposizioni in Turino—1948 (6).



Figure 1-3—Palazzo delle Esposizioni (5).

According to Askari, after World War II, Nervi made a breakthrough in the field
of reinforced concrete: the invention of ferro-cemento. Ferro-cemento used steel mesh
as a core and layers of cement were brushed on top. The mesh was thin, flexible, and
elastic. Ferro-cemento enabled Nervi to design any form he wanted. Ferro-cemento
could easily be prefabricated in plaster molds. Over the next thirty years Nervi took on
about twenty-five concrete projects. Just after WWII, he designed the Turin Exhibition
Hall which has been hailed as “one of the most impressive interior spaces of the century.’
He built the George Washington Bridge bus terminal in New York City which one critic
compared to “an alighted butterfly.”

Other Nervi buildings in the United States include a field house for Dartmouth
College and the Cathedral of San Francisco. For his work he was awarded an honorary
degree by Harvard University and given the gold medal of the American Institute of

Architects (7).

Eduardo Torroja (1891 — 1961)

Eduardo Torroja was a Spanish architect and engineer notable as a pioneer in the
design of concrete-shell structures. Torroja graduated as an engineer in 1923 and began
working with a contractor. He became a consulting engineer in 1927 (12). With José

Maria Aguirre he founded, in 1934, an experimental institute to develop new uses and

)



theories for reinforced concrete. An example of his building technique is the Algeciras
market in Spain built in 1933 (see Figure 1-4) (14). This concrete structure has a 48 m.

diameter shell placed over eight pillars joined by a prestressed tie beam (15).

Figure 1-4—Algeciras Market (13).
Torroja built a water reservoir for Madrid in 1936 and in 1939 he became a
Professor at the Escuela de Caminos in Madrid as well as Director of the Instituto

Tecnico de la Construccion y del Cemento (13).

Felix Candela (1910 — 1997)

A student of Eduardo Torroja, Felix Candela was born in Madrid in 1910. He
entered Madrid's Escuela Superior de Arquitectura in 1927 and graduated in 1935.
Sidetracked by his political struggle against Franco, he did not practice architecture until
he immigrated to Mexico in 1939 (8).

Felix Candela did not invent the concrete shell nor was he the first to use
hyperbolic parabaloids, but the Huddersfield Gem website asserts he was the all time
greatest practitioner of shell design, citing his light, audaciously thin structures revealing
engineering of great sophistication. His name has become synonymous with the

hyperbolic parabaloid (hypar) (11).



His development of the hypar umbrella with four tympans was groundbreaking
for architects and engineers and highly influential. This influence is clear in the
Queensgate market (8). Queensgate Market, Huddersfield, opened in 1970, replacing the
previous 1878 market building. The striking feature of the interior is its roof structure,
based on 21 asymmetric hyperbolic paraboloids (hypar) which appear like giant

mushrooms (See Figure 1-5) (19).

Figure 1-5—Exterior View of Queensgate Market (19).

Candella believed that strength should come from form, not mass. This belief led
to an extensive exploration of tensile shell structures. His nickname became "The Shell
Builder" because of this structural favoritism (8). The encyclopedia Brittanica calls Felix

Candela a “designer of reinforced-concrete (ferroconcrete) structures distinguished by

s



thin, curved shells that are extremely strong and unusually economical.” (9)

Frequently forced to act as architect, structural engineer and contractor in order to
further his work, Candella saw architects as engineers who possess the ability to design
both great cathedrals and low cost housing (8).

From 1949 he built, designed or engineered hundreds of ferro concrete structures.
Among his best-known works are the Cosmic Ray Pavilion (1950-51) for Mexico's
University City; the Church of La Virgen Milagrosa (1953), Mexico City; and Los
Manantiales restaurant (1958), Xochimilco (10).

In 1961, Felix Candela was awarded the gold medal of the institution of Structural

Engineers (11).

David B. South (1939 -)

The Monolithic story begins with David B. South and his interest in dome
building. That interest started when David was still in high school and never waned. In
fact, it intensified. By 1975, David and his two brothers, Barry and Randy, had
successfully built their first Monolithic Dome-- a potato storage facility in Shelley, Idaho,
105" in diameter and 35" high (17).

In 1979, the first patent was awarded for the Monolithic Dome construction
process. And since 1976, Monolithic Domes have been constructed in 45 states and many

foreign countries (18).



The Monolithic Dome Construction Process
A Monolithic Dome starts as a concrete ring foundation reinforced with steel
rebar. Vertical steel bars embedded in the ring beam footing are later attached to the steel

reinforcing of the dome itself (18).

The Airform, fabricated to a proper shape and size, is attached to the concrete
base. Using fans, the Airform is inflated - creating the shape of the dome. The Airform is
both the form for construction of the dome and the outer roof membrane of the shell
when it is finished. Inflator fans run throughout the construction of the dome shell (18).

Approximately three inches of polyurethane foam insulation is applied to the
interior surface of the Airform. Then, steel reinforcing bars, or rebar, are attached to the
foam using special hooks embedded in the foam. The rebar is placed in a specially
engineered layout of hoop (horizontal) and vertical steel rebar (18).

Shotcrete, a special spray mix of concrete, is sprayed onto the interior surface of
the polyurethane foam, embedding the rebar. After three inches of shotcrete is applied,

the Monolithic Dome is a steel reinforced concrete structure (See Figure 1-6), (18).



Figure 1-6—The Monolithic Dome Construction (18).
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Chapter 2
AN INTRODUCTION TO SHELL THEORY

To make a comparison between the finite element analysis of the strength of the
Monolithic Dome and theory, the traditional shell equations and stress resultants must be
introduced.

The development of the stress resultants from membrane theory as presented in
Billington’s “Thin Shell Concrete Structures™ are the foundations for modern day dome
analysis.

Figure 2-1 defines a differential shell element in the spherical coordinate system.
For a shell of revolution, due to symmetry in the static equilibrium equations, all purely

geometric terms involving 00 vanish and we find for domes the equations:

(2-1)

- + - = ]

=1l



Then, when the loading is symmetrical with respect to the axis, all terms
involving 00 vanish and the partial differential terms, dp, can now be written as ordinary

differentials do since nothing varies with 0. The circumferential component of load, pg,

is zero, and the shear stress resultants vanish along the meridians and parallel circles.

Therefore, the first equation vanishes and the remaining two reduce to:
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Figure 2-1—Definitions for domes from Billington (1).

Thus, the solution of the above equations for the force per length resultants N’g

and N’ (referred to as stress resultants in Billington) is required for axisymmetrical

=13



domes under axisymmetrical loading. The first of the two equations can be written in

another form which has a simpler solution. From Figure 2-2 a, observe:
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Figure 2-2—Dome Forms from Billington (1).

The effect of N’ in the meridian direction could have been directly obtained from

Figure 2-2 b by noting that the meridian sides of the element form the angle dfcos(¢)
with each other. Therefore, in the meridional direction there will be a component of the

hoop stress resultant in the negative direction:

A ;_,J'| (hl;’}u'l”- {(flj )

The multipliers do and d® become constants throughout and therefore cancel.

Thus, when they are dropped, the above reduces to:

Vor'| (o)

The second equation of (2-2) can be solved for N'g:




because

Now, N’g is introduced into the first of (2-2) and each term is multiplied by sin(¢) to

obtain:
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The above is then multiplied by 2x and integrated with respect to ¢, yielding:
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Using integration by parts:
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where u = sing@, du = cos@dg, dv = [d(N @ry)/de]de, and v = N'¢r,. Thus, the left side

of the equation becomes:
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where (pq,sin(cp) + pzcos(9)) gives the vertical component of the load. 2ar, sums this

vertical load over a complete parallel circle, and int(0, ¢)r{de integrates the vertical load

along a meridian. Thus, the above equation represents the total vertical load (R in Fig. 2-

3) above the paralled circle defined by . N’@2nr,sing is the total vertical component of

N’¢ at the parallel circle ¢.
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Thus, N @ can be written as:
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Figure 2-3—Dome Equilibrium from Billington (1).
Specifically of interest for verification of the validity of Finite Element Analysis
of stress is a uniform load over the dome surface of a spherical dome. Billington gives

the case of the spherical dome of uniform thickness under dead load, r| = =a, py =

= 7=



gsing, and p, = qcosy, where q is the dead weight of the shell in terms of force/(length)2,

and

R = 2ra’yq | sin(@)do

jﬁ'f_-':ffr.l —cos(@))
and (2-3) become

| (2-4)
1 + cos(@)

_\';.., —df

| (2-5)
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Equations (2-4) and (2-5) are the two membrane resultants. If evaluated over a
hemisphere, the meridional values, (2-4), are compressive and increase from the crown to
the edge. The hoop values, (2-5), decrease from a maximum compression at the crown to
zero where cos @ = (1/(1 + cos @), or about ¢ =51°50’; then they become tension and
increase to a maximum at the edge.

Equations (2-4) and (2-5) are used throughout the course of the finite element
analysis for results comparisons and accuracy verification. The Finite Element model is
regarded as valid only after basic stress comparisons are made between the model and
theory.

The current design practice utilizes theory. However, there is an increase in the
use of Finite Element Analysis in design for more complicated models--for example,
domes with skylights, cutouts or various complicated loadings. The agreement between

shell theory and FEA will increase confidence in the Finite Element model and results.
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Chapter 3
AN INTRODUCTION TO FINITE ELEMENT ANALYSIS AND NE/NASTRAN

Daryl L. Logan describes the Finite Element Method as *“a numerical method for
solving problems of engineering and mathematical physics.” Some typical problems that
are solvable by use of Finite Element methods include structural analysis, heat transfer,
fluid flow, mass transport, and electromagnetic potential (20).

It is very difficult to obtain closed-form solutions for complicated geometries,
loadings, and material properties. Analytical solutions generally require the solution of
ordinary or partial differential equations, which are not usually obtainable for complex
problems. Hence, numerical methods are relied upon, such as the Finite Element method,
for acceptable solutions. Numerical methods yield approximate values of the unknowns
at discrete points. The process of modeling a body by dividing it into an equivalent
system of smaller units (finite elements) interconnected at points common to two or more
elements (nodal points or nodes) and/or boundary lines and/or surfaces is called
discretization. In the finite element method, equations are formulated for each finite
element and then combined to obtain the solution of the entire model (20).

For structural problems, the solution generally refers to determining the
displacements and stresses at each node and within each element that makes up the
structure when it is subjected to applied loads. When analyzing nonstructural problems,
the unknown nodal values may be temperatures or fluid pressures, etc. (20).

The general steps of the finite element method for the structural stress-analysis

problem are described in Logan’s text as follows.
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Step 1: Discretize and Select the Element Types. Dividing the body into an
equivalent system of finite elements with associated nodes and choosing the most
appropriate element type to model most closely the actual physical behavior. The
elements must be small enough to give usable results and large enough to reduce
computational effort. Thus, some engineering judgment must be used. Small
elements are generally desirable where the results are changing rapidly, such as
where changes in geometry occur; large elements can be used where results are

relatively constant.

Element choice depends on the physical makeup of the body under actual loading
conditions. Judgment must be used in choosing one-, two-, or three-dimensional

idealizations. Elements that are commonly employed are shown in Figure 3-1.

BE
1 f— x

(a) Simple line element typically used to represent a
bar or beam element
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(d) Simple axisymmetric element

Figure 3-1—Various Types of Finite Elements from Logan (20).
The primary line elements (Figure 3-1a) consist of bar (or truss) and beam

elements. They have a cross-sectional area but are usually line elements. The



simplest line element, called a linear link or spar element, has two nodes, one at
each end. Higher order elements having three nodes or more, called quadratic,

cubic, etc., also exist.

The basic two-dimensional, plane, elements (Figure 3-1b) are loaded by forces in
their own plane. They are triangular or quadrilateral elements. The simplest two-
dimensional plate elements have corner nodes with straight sides or boundaries,
called simplex elements. There are also serendipity higher-order, quadratic,
elements with midside nodes and curved sides. These elements can have variable

or constant thicknesses.

The most common three-dimensional elements (Figure 3-1c¢) are tetrahedral and

hexahedral, brick, elements. They are used for three-dimensional stress analysis.
The basic three-dimensional elements have corner nodes only and straight sides.

Higher-order elements, Lagrange elements, have midedge nodes (and possible

midface nodes) and have curved surfaces for their faces.

The axisymmetric element (Figure 3-1d) is developed by rotating a triangle or
quadrilateral through 360° about a fixed axis located in the plane of the element.

This element can be used when the geometry and loading are axisymmetric.

Step 2: Select a Displacement Function. The displacement function is defined
within the element using the nodal values of the element. Frequently used

functions are linear, quadratic, and cubic polynomials because they are simple to
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work with in finite element formulation. Trigonometric series can also be used.
The displacement function of a two-dimensional element is a function of the
coordinates in its plane. The functions are expressed in terms of the nodal
unknowns. The same general displacement function can be used repeatedly for

each element.

e Step 3: Define the Strain/Displacement and Stress/Strain Relationships.
Strain/displacement and stress/strain relationships are necessary for deriving the
equations for each finite element. For example, in the case of one-dimensional

deformation, say, in the x direction, strain &y is related to the displacement u by
ex = du/dx for small strains. Stresses must be related to strains through the

stress/strain relation called Hooke’s Law. Being able to define the material’s
behavior accurately is most important in obtaining acceptable results. Hooke’s

law, ox = Eey, is used in stress analysis, where oy = stress in the x direction and E

= modulus of elasticity.

e Step 4: Derive the Element Stiffness Matrix and Equations.
1. Direct Equilibrium Method: The stiffness and element equations relating
nodal forces to nodal displacements are obtained using force equilibrium
conditions for a basic element, along with force/deformation relationships.

This method is most easily adaptable to line or one-dimensional elements.

2. Work or Energy Methods: This method is easier for two- and three-

dimensional elements. The principle of virtual work (using virtual
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displacements), the principle of minimum potential energy, and

Castigliano’s theorem are methods frequently used.

3. Methods of Weighted Residuals: These methods are useful for developing

the element equations; particularly popular is Galerkin’s method.

Any of the above methods will produce the equations to describe the behavior

of an element. These equations written in compact matrix form are:

{f}y = [k]{d}
where {f} is the vector of elemental nodal forces, [Kk] is the element stiffness
matrix, and {d} is the vector of unknown element nodal degrees of freedom or
generalized displacements, n. These may include actual displacements,

slopes, or even curvatures.

Step 5: Assemble the Element Equations to Obtain the Global or Total Equations
and Introduce Boundary Conditions. The individual element equations generated
in step 4 can now be added together using a method of superposition (called the
direct stiffness method)—whose basis is nodal force equilibrium—to obtain the
global equations for the whole structure. There must be consistency in the
deformation of the structure, that is, elements sharing a node will have the same
displacements at that node.

The final assembled or global equation written in matrix form is

{F} = [K]{d}
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where {F} is the vector of global nodal forces, [K] is the structure global or total
stiffness matrix, and {d} is the vector of known and unknown structure nodal
degrees of freedom or generalized displacements. The global stiffness matrix [K]
is a singular matrix. Thus, certain boundary conditions must be invoked (from
constraints or supports) so that the structure remains in place. The applied loads

have been accounted for in the global force matrix {F}.

Step 6: Solve for the Unknown Degrees of Freedom (or Generalized
Displacements). The equation {F} = [K]{d} is a set of simultaneous algebraic

equations that can be written in expanded matrix form as

Il K1l K12......Kln dl
F2 K21 K22......K2n d2

Fn Knl Kn2......Knn dn

(. -

\
where n is the total number of unknown nodal degrees of freedom.

These equations can be solved for the d’s by using an elimination method such as
Gauss’s Method. The d’s are called the primary unknowns, because they are the

first quantities to be determined in using the finite element method.

Step 7: Solve for the Element Strains and Stresses. Important secondary
quantities of strain and stress (or moment and shear force) can be obtained
because they can be directly expressed in terms of the displacements determined

in step 6. The equations given in step 3 can be used.
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e Step 8: Interpret the Results. The final goal is to interpret and analyze the results
for use in the design/ analysis process. The determination of locations in the
structure where large deformations and stresses occur is important in making

design/analysis decisions.

These steps, as described in Logan’s text, are the basis for the finite element modeling
software available. The software used in this dome analysis was NE/Nastran version 8.3,
from Noran Engineering.

As described in the NE/Nastran User Guide, NE/Nastran is a finite element
modeling and post-processing software. NE/Nastran provides the capability to develop
sophisticated analyses of stress, temperature, and dynamic performance directly on the
desktop. NE/Nastran can be used to create geometry, or CAD geometry can be imported.
NE/Nastran provides powerful tools for meshing geometry, as well as applying loads and
boundary conditions. Once results are obtained, a wide variety of tools are available for

visualizing and reporting (21).

Geometry

Geometry can be created directly in NE/Nastran using wireframe and solid
modeling tools. NE/Nastran includes solid modeling directly in the program with two
similar, popular geometry engines (Parasolid and ACIS). Solid models can be built in

either engine, and then a model can be exported (21).
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Finite Element Modeling

Regardless of the origin of the geometry, NE/Nastran can be used to create a
complete finite element model. Meshes can be created by many methods ranging from
manual creation, to mapped meshing between keypoints, to fully automatic meshing of
curves, surfaces and solids. NE/Nastran can even work with existing analysis models.

Appropriate materials and section properties can be created or assigned from
libraries. Many types of constraint and loading conditions can be applied to represent the
design environment. Loads/constraints can be applied directly on finite element entities
(nodes and elements), or can be applied to the geometry. NE/Nastran will automatically
convert geometric conditions to nodal/elemental values upon translation to the solver

program (21).

Checking The Model

NE/Nastran for Windows contains a multi-level undo and redo capability. It also
provides extensive tools for checking the model before it is analyzed. NE/Nastran also
provides a comprehensive set of tools to evaluate the finite element model and identify
errors that are often not obvious. For example, it can check for coincident geometry, find
improper connections, estimate mass and inertia, evaluate constraint conditions, and sum
loading conditions. Each of these methods can be used to identify and eliminate potential

errors (21).
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Analyzing The Model

When the model is complete, the NE/Nastran solver is used. The NE/Nastran for
Windows solver is a general finite element analysis program for structural and thermal
analysis that is integrated with NE/Nastran for Windows (21).
Post-processing

After the analysis, NE/Nastran provides both powerful visualization tools, and
numerical tools to search, report, and perform further calculations using these results.
Deformation
plots, contour plots, animations, and XY plots are just some of the post-processing tools
available (21).
Documenting Results

Documentation is also a very important factor with any analysis. NE/Nastran
provides direct, high quality printing and plotting of both graphics and text. Frequently,
however, graphics or text must be incorporated into a larger report or presentation.
NE/Nastran can export both graphics and text to non-engineering programs with a simple
Windows Cut command. Pictures can be easily exported to Microsoft Word, Microsoft
PowerPoint, and Adobe Framemaker. Spreadsheets, databases, word processors, desktop

publishing software, and paint and illustration programs can be exported (21).

NE/Nastran for Windows
NE/Nastran for Windows currently supports:
* statics analysis solves for linear, static stress, and deflection results when

thermo-mechanical loads are present.
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* dynamic (normal modes) solves for natural frequencies and mode shapes of
either restrained or free-free structures.

* advanced dynamics capabilities such as transient response, frequency response,
response spectrum analysis, random response.

* nonlinear static and transient analysis.

* both steady-state and transient heat transfer analysis solves for temperatures due
to convection, conduction, heat generation and radiation.

* linear buckling analysis.

* design optimization helps find more efficient design solutions (21).
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Chapter 4

A COMPARISON BETWEEN SHELL THEORY AND FEA FOR A
HEMISPHERICAL DOME

A comparison of a hemispherical dome was made between the NASTRAN Finite
Element Analysis results and the shell theory equations using an example found on page
207 of “Stresses in Plates and Shells,” by A.C. Ugural. A simply supported covered
market dome of radius, a, and thickness, 7, carrying only its own weight, p, per unit area
was considered. The hemispherical dome was to be constructed of 70-mm-thick concrete
of unit weight 23 KN/m3 and span 2a = 56m. The modulus of elasticity was given as
20GPa.

The membrane stresses were calculated using the following equations from
Ugural which are equivalent to those derived previously but used in a slightly different

form:

Meridional Stress: o = - ap/(t*(1+cosg)) (4-1)

Hoop Stress: og = - (ap/t)*[ cose — 1/(1 + cosg)] 4-2)

In the hemispherical case, @ = 90°. From the given information, a=28m, t =

.03m, and p = (23 KN/m3 * t). Therefore, Equation (4-1) yields -644 KPa at the bottom
edge of the dome, which is the maximum compressive stress. Equation (4-2) yields +644
KPa also located at the bottom edge of the dome, which is the maximum tensile stress.

In NASTRAN, the geometry for a 28m radius hemispherical dome was generated

using the parasolid modeling engine within NE/Nastran. Material properties were
entered as t = .03m, E =20 x 106 KPa, v=10.15, and mass density = (23 KN/m3) / (9.81

m/s2) = 0.002345. To include the self-weight of the dome and the gravitational
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A very fine mesh was used in the final analysis of the stresses as shown in Figure
4-7. The maximum hoop stress was found to be +647.5 KPa (Figure 4-8), and the
maximum meridional stress was -638.1 KPa (Figure 4-9). With each refinement at this
point, the stress values were converging. Comparing the calculations using shell theory
with the NASTRAN results, the stresses were found to be approximately equal; see Table

4-1.

['able 4-1 — Shell Theory vs. FEA Stress Results for 56m Span Hemispherical Dome.

Method | Maximum f[imp Stress, | Maximum Meridional
B | KPa | Stress,KPa
Shell Theory |64 644 B

NASTRAN, FI [+647.5 -638.1

Thus, the finite element model is valid.

e AT W s R e e e e )
Figure 4- Fine Mesh of 56m Span Hemispherical Dome in NASTRAN
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A vertical row of 77 elements beginning at the bottom edge of the dome and

ranging to the top of the dome were analyzed in greater detail. Table 4-2 lists the element

number, the vertical distance to the center of each element, and the forces and moments

that were calculated by NASTRAN at the center of each element.

Table 4-2 — Elements, Forces, and Moments from Bottom Edge to Apex of 56m Span

Dome.
Element | Height, | Fx, KN | Fy, KN | Fxy, KN | Mx, My, Mxy,
m KN-m KN-m KN-m

45 0.32 44 117 -44 555 0.177 | -2.57E-04 | 4.39E-04 | -4.24E-05
133 0.97 42022 -43.559 0.175 | -2.28E-04 | 1.01E-03 | 1.52E-05
221 1.62 40.004 -42.609 0.176 | -2.28E-05 | 1.12E-03 | 7.98E-05
309 2.26 38.059 -41.702 0.175 | 6.28E-05 | -2.52E-05 | 6.20E-05
397 2.90 36.157 -40.834 0.173 | 1.64E-04 | -1.97E-04 | -2.06E-06
485 3.55 34,289 -40.003 0.172 | 2.78E-04 | 7.13E-04 | -4.99E-05
573 4.19 32.465 -39.206 0.171 | 7.84E-05 | -6.15E-05 | -1.46E-05
661 483 30.674 -38.443 0.171 | 1.04E-04 | 1.12E-04 | 8.91E-06
749 5.46 28.918 -37.714 0.168 | 2.36E-04 | 6.68E-04 | -1.19E-05
837 6.09 27.204 -37.015 0.166 | 2.24E-04 | 3.11E-04 | 1.66E-05
925 6.72 25.524 -36.344 0.164 | 2.30E-04 | 2.03E-04 | -8.22E-06
1013 7.35 23.874 -35.701 0.162 | 2.62E-04 | 3.69E-04 | -9.89E-06
1101 7.97 22.253 -35.084 0.161 | 2.89E-04 | 4.09E-04 | -3.38E-06
1189 8.59 20.664 -34.492 0.159 | 3.83E-04 | 545E-04 | 2.22E-05
1277 9.20 19.107 -33.925 0.156 | 4.46E-04 | 3.87E-04 | 1.08E-05
1365 9.81 17.578 -33.381 0.153 | 546E-04 | 592E-04 | 1.93E-04
1453 10.41 16.081 -32.857 0.149 | 6.78E-04 | 1.09E-03 | 6.85E-06
1541 11.01 14.624 -32.354 0.147 | 6.32E-04 | 7.43E-04 | -5.86E-06
1629 11.40 13.199 -31.870 0.144 | 5.65E-04 | 2.37E-04 | -1.04E-05
1717 11.99 11.791 -31.405 0.140 | 6.26E-04 | 4 42E-04 | -1.45E-05
1805 12.77 10.406 -30.958 0.137 | 6.95E-04 | 1.00E-03 | -1.37E-05
1893 13.34 9.054 -30.530 0135 | 7.12E-04 | 8.76E-04 | 3.91E-05
1981 13.90 7.735 -30.120 0.131 | 8.27E-04 | 7.34E-04 | 2.03E-05
2069 14.46 6.442 -29.726 0.127 | 8.99E-04 | 7.99E-04 | -1.55E-05
2157 15.01 5175 -29.347 0.123 | 9.38E-04 | 8.95E-04 | 1.95E-05
2245 15.55 3.935 -28.983 0.120 | 1.05E-03 | 1.10E-03 | 2.25E-05
2333 16.09 2.T27 -28.631 0.116 | 9.97E-04 | 1.03E-03 | -6.05E-05
2421 16.61 1.548 -28.292 0.112 | 9.17E-04 | 1.07E-03 | -1.58E-05
2509 17.13 0.401 -27.968 0.108 | 9.22E-04 | 9.83E-04 | 1.21E-05
2597 17.64 -0.720 -27.658 0.104 | 941E-04 | 6.47E-04 | 2.39E-05
2685 18.14 -1.823 -27.361 0.101 | 1.07E-03 | 8.79E-04 | 2.48E-05
273 18.62 -2.905 -27.076 0.097 | 1.16E-03 | 1.25E-03 | -2.57E-07
2861 19.10 -3.959 -26.801 0.092 | 1.17E-03 | 1.04E-03 | 1.52E-05
2949 19.57 -4.986 -26.538 0.087 | 1.27E-03 | 1.35E-03 | -6.38E-05
6029 19.96 -5.847 -26.317 0261 | 1.32E-03 | 1.79E-03 | -4.40E-05
6117 20.28 -6.529 -26.143 0278 | 1.27E-03 | 1.53E-03 | 587E-05




6205 20.59 -7.192 -25.973 0.294 | 1.14E-03 | 1.21E-03 | -1.98E-05
6293 20.90 -7.847 -25.807 0.306 | 1.04E-03 | 7.89E-04 | -1.61E-05
6381 21.20 -8.494 -25.647 0.313 | 1.28E-03 | 1.22E-03 | -2.19E-05
6469 21.50 -9.131 -25.492 0.319 | 1.45E-03 | 1.21E-03 | -6.11E-05
6557 21.80 -9.760 -25.339 0.324 | 1.44E-03 | 1.21E-03 | 4.06E-05
6645 22.09 -10.379 -25.191 0.328 | 1.42E-03 | 1.48E-03 | 1.42E-04
6733 22.38 -10.985 -25.046 0.327 | 1.30E-03 | 1.39E-03 | 7.46E-05
6821 22.66 -11.578 -24.904 0.323 | 1.21E-03 | 1.35E-03 | 8.45E-06
6909 22.94 -12.156 -24.768 0.319 | 1.22E-03 | 1.23E-03 | -8.61E-05
6997 23.21 -12.725 -24.636 0.312 | 1.17E-03 | 1.13E-03 | -1.04E-04
7085 23.47 -13.283 -24.508 0.306 | 1.28E-03 | 1.69E-03 | 1.41E-05
7173 23.73 -13.822 -24.385 0.298 | 1.34E-03 | 1.51E-03 | 6.27E-06
7261 23.99 -14.348 -24.266 0.288 | 1.30E-03 | 8.82E-04 | -8.37E-05
7349 24.23 -14.866 -24.151 0.279 | 1.43E-03 | 1.19E-03 | -8.60E-05
7437 24.47 -16.373 -24.042 0.271 | 1.63E-03 | 1.74E-03 | 7.07E-05
7525 2471 -15.864 -23.935 0260 | 1.77E-03 [ 1.98E-03 | 6.19E-05
7613 24.94 -16.332 -23.831 0249 | 168E-03 | 1.68E-03 | 6.21E-06
7701 25.16 -16.783 -23.730 0.238 | 1.49E-03 | 1.19E-03 | 1.24E-05
7789 25.38 -17.224 -23.634 0.227 | 1.55E-03 | 1.30E-03 | 3.16E-05
7877 25.58 -17.651 -23.543 0216 | 1.66E-03 | 1.62E-03 | 1.01E-04
7965 25.78 -18.062 -23.455 0.203 | 1.53E-03 | 1.56E-03 | 5.54E-05
8053 25.98 -18.457 -23.373 0.190 | 1.51E-03 | 1.51E-03 | -7.45E-05
8141 26.16 -18.833 -23.294 0.178 | 1.77E-03 | 1.72E-03 | -7.05E-05
8229 26.34 -19.192 -23.219 0.167 | 1.94E-03 | 1.81E-03 | -3.77E-05
8317 26.51 -19.5632 -23.146 0.157 | 1.70E-03 | 1.27E-03 | 1.11E-04
8405 26.67 -19.859 -23.077 0.146 | 1.58E-03 | 1.46E-03 | 8.31E-05
8493 26.82 -20.171 -23.013 0.133 | 1.58E-03 | 1.73E-03 | -7.56E-05
8581 26.96 -20.462 -22.954 0.122 | 1.55E-03 | 1.51E-03 | -3.94E-05
8669 27.10 -20.736 -22.900 0.112 | 1.60E-03 [ 1.69E-03 | -1.88E-05
8757 27.22 -20.990 -22.849 0.103 | 1.61E-03 | 1.83E-03 | 9.01E-05
8845 27.34 -21.222 -22.801 0.093 | 1.59E-03 | 1.60E-03 | 9.07E-05
8933 27.45 -21.437 -22.755 0.081 | 1.50E-03 | 1.34E-03 | -1.48E-04
9021 27.55 -21.637 -22.715 0.072 | 1.48E-03 | 1.39E-03 | -1.12E-04
9109 27.63 -21.821 -22.680 0.065 | 1.82E-03 | 1.90E-03 | 4.19E-05
9197 27.71 -21.982 -22.649 0.059 | 1.95E-03 | 2.07E-03 | 8.10E-05
9285 27.78 -22.118 -22.619 0.051 | 1.67E-03 | 1.61E-03 | 1.17E-04
9373 27.84 -22.234 -22.594 0.041 | 1.55E-03 | 1.45E-03 | -3.59E-05
9461 27.89 -22.334 -22.572 0.032 | 1.58E-03 | 1.77E-03 | -1.24E-04
9549 27.93 -22.412 -22.554 0.025 | 1.52E-03 [ 1.55E-03 | 4.99E-06
9637 27.96 -22.472 -22.540 0.017 | 1.53E-03 [ 1.46E-03 | 3.22E-05
9725 27.98 -22.515 -22.531 0.009 | 1.52E-03 | 1.69E-03 | -6.79E-05
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Plots of height vs. forces in the x and y direction are shown in Figures 4-10 and 4-
11 below. Fx corresponds to the hoop forces and Fy corresponds to the meridional

forces. Fxy =0.

Fx.
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Figure 4-10 — Height vs. Fx for 56m Span Hemispherical Dome.
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Figure 4-11 — Height vs. Fy for 56m Span Hemispherical Dome.



A plot of height vs. moments in the x and y directions are shown in Figures 4-12

and 4-13 below. Mx and My show a general increasing trend with increase in height.
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Figure 4-12 — Height vs. X-Moments for 56m Span Hemispherical Dome.
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Figure 4-13 — Height vs. Y-Moments for 56m Span Hemispherical Dome.
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For the same vertical row, the meridional and hoop stresses were analyzed at the

center of each element. Table 4-3 lists the element number, the vertical distance to the

center of each element, the hoop, and meridional stresses that were calculated by

NASTRAN, and the hoop and meridional stresses calculated using shell theory.

Table 4-3—Comparison of Stresses Between FEA and Theory from Bottom Edge to

Apex of 56m Span Dome.
Element Height, m | ©, degrees 0P, KPa, og, KPa, Sp » KPa, @ 5 KPa,
FEA Theory FEA Theory
45 0.32 89.35 629.92 629.3632 -635.96 -636.723
133 0.97 88.01 600.03 600.127 -621.03 -622.437
221 1.62 86.68 571.46 571.5179 -607.32 -608.778
309 2.26 85.37 543.78 543.9222 -595.77 -595.902
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397 2.90 84.06 516.73 516.8599 -583.59 -583.56

485 3.55 82.72 490.18 489.8872 -570.59 -671.537

573 4.19 81.39 463.88 463.804 -560.16 -560.174

661 4.83 80.07 438.33 438.1637 -649.06 -549.254

749 5.46 78.76 413.40 413.3321 -537.95 -538.912

837 6.09 77.44 388.90 388.8828 -528.40 -528.953

925 6.72 76.11 364.91 364.7948 -518.95 -519.355
1013 7.35 74.78 341.37 341.049 -509.56 -510.099
1101 7.97 73.46 318.25 317.9966 -500.70 -501.307
1189 8.59 7213 295.67 295.2422 -492.08 -492.812
1277 9.20 70.82 273.51 273.1312 -484.17 -484.731
1365 9.81 69.49 251.78 251.2809 -476.14 -476.911
1453 10.41 68.17 230.56 230.0311 -468.05 -469.461
1541 11.01 66.85 209.69 209.0105 -461.29 -462.24
1629 11.40 65.97 189.24 195.465 -454.99 -457.665
1717 11.99 64.65 169.21 175.1427 -448.10 -450.913
1805 12.77 62.87 149.50 148.576 -441.03 -442.286
1893 13.34 61.55 130.21 129.3677 -435.07 -436.188
1981 13.90 60.24 111.51 110.658 -429.39 -430.358
2069 14.46 58.91 93.14 92.10205 -423.68 -424.682
2157 15.01 57.58 75.08 74.02134 -418.15 -419.251
2245 15.55 56.26 57.50 56.40281 -412.69 -414.053
2333 16.09 54.93 40.17 38.91163 -407.75 -408.982
2421 16.61 53.61 23.24 22.1843 -402.87 -404.214
2509 17.13 52.28 6.86 5.566836 -398.34 -399.567
2597 17.64 50.95 -9.14 -10.628 -394.33 -395.092
2685 18.14 49.62 -24.73 -26.4094 -389.80 -390.811
2773 18.62 48.32 -40.08 -41.4732 -385.27 -386.787
2861 19.10 46.99 -566.12 -56.455 -381.60 -382.845
2949 19.57 45.66 -69.68 -71.0476 -377.46 -379.062
6029 19.96 44.53 -81.92 -83.1 -373.77 -375.98
6117 20.28 43.59 -91.72 -92.952 -371.59 -373.488
6205 20.59 42.66 -101.35 -102.465 -369.56 -371.105
6293 20.90 41.72 -110.82 -111.947 -367.70 -368.763
6381 21.20 40.79 -119.78 -121.096 -364.89 -366.504
6469 21.50 39.84 -128.67 -130.217 -362.68 -364.283
6557 21.80 38.87 -137.67 -139.312 -360.52 -362.088
6645 22.09 37.91 -146.53 -148.078 -358.06 -359.992
6733 22.38 36.94 -155.33 -156.82 -356.10 -357.92
6821 22.66 35.97 -163.92 -165.238 -354.11 -355.942
6909 22.94 34.99 -172.17 -173.635 -352.32 -353.985
6997 23.21 34.01 -180.35 -181.711 -350.55 -352.119
7085 23.47 33.056 -188.19 -189.47 -348.03 -350.34
7173 23.73 32.06 -195.82 -197.211 -346.50 -348.579
7261 23.99 31.04 -203.38 -204.934 -345.57 -346.836
7349 24.23 30.08 -210.62 -212.048 -343.56 -345.242
7437 24.47 29.08 -217.62 -219.147 -341.33 -343.663
7525 24.71 28.05 -224 .46 -226.232 -339.51 -342.098
7613 24.94 27.04 -231.26 -233.008 -338.39 -340.612
7701 25.16 26.03 -237.93 -239.478 -337.55 -339.202
7789 25.38 24.98 -244.16 -245.936 -336.04 -337.804
7877 25.58 24.00 -250.13 -251.797 -334.35 -336.543
7965 25.78 22.97 -256.15 -257.648 -333.17 -335.292
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8053 25.98 21.90 -261.82 -263.49 -332.05 -334.05
8141 26.16 20.89 -266.87 -268.741 -330.68 -332.939
8229 26.34 19.83 -271.79 -273.983 -329.48 -331.837
8317 26.51 18.78 -276.95 -278.928 -329.10 -330.802
8405 26.67 17.73 -281.77 -283.576 -327.88 -329.834
8493 26.82 16.69 -286.21 -287.929 -326.64 -328.931
8581 26.96 15.66 -290.42 -291.987 -326.07 -328.093
8669 27.10 14.57 -294.27 -296.04 -325.07 -327.26
8757 27.22 13.56 -297.88 -299.512 -324.17 -326.548
8845 27.34 12.46 -301.22 -302.98 -323.77 -325.84
8933 27.45 11.38 -304.41 -306.156 -323.43 -325.194
9021 27.55 10.29 -307.30 -309.042 -322.80 -324.608
9109 27.63 9.32 -309.50 -311.348 -321.68 -324.142
9197 27.71 8.25 -311.64 -313.654 -321.01 -323.676
9285 27.78 7.19 -313.92 -315.67 -321.17 -323.27
9373 27.84 6.13 -315.73 -317.397 -321.00 -322.923
9461 27.89 5.08 -317.12 -318.836 -320.29 -322.634
9549 27.93 4.05 -318.31 -319.987 -320.30 -322.403
9637 27.96 3.06 -319.17 -320.85 -320.21 -322.23
9725 27.98 2.17 -319.78 -321.425 -319.80 -322.115
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A plot of height vs. hoop stress was generated for both the finite element analysis
results and the shell theory results. The comparison is shown below in Figure 4-14.

Height, m

Figure 4-14 — Comparison of FEA and Shell Theory with Height vs. Hoop Stress for 56m
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A plot of height vs. meridional stress for shell theory and FEA was also generated

and is shown in figure 4-15.
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Figure 4-15—Comparison of FEA and Shell Theory with Height vs. Meridional Stress
for 56m Span Hemispherical Dome.

The finite element results and shell theory results are virtually equal. However,
caution must be exercised when building the finite element model. A small error in any
of the steps of model creation can produce results that are drastically different than the
results from shell theory. Therefore, it is imperative that a comparison is made between

FEA and theory for the basic model as presented in this chapter. After positive
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comparison, the finite element model of the hemispherical dome is found to be valid and

more complicated examples can be explored.

o'



Chapter S

A COMPARISON BETWEEN SHELL THEORY AND FEA FOR A
TRUNCATED DOME

The stresses on a truncated hemispherical dome as calculated by the NASTRAN
Finite Element Analysis results and the shell theory equations were compared using an
example found on page 207 of “Stresses in Plates and Shells,” by A.C. Ugural (22). A
simply supported covered market dome of radius, a, and thickness, ¢, carrying only its
own weight, p, per unit area was considered. The hemispherical dome was to be
constructed of 70-mm-thick concrete of unit weight 23 KN/ m3 and span 2a = 56m. The
modulus of elasticity was given as 20GPa.

The membrane stresses at the bottom edge of the dome were calculated using the

following equations from Ugural:

Meridional Stress:

(5-1)

op = -ap/t * [(cosp - cosp) /sin2¢] — P/t * (sincpofsinch)

Hoop Stress:

o= ap/t *{ [(cosp - cos®) /sin2@] — cos@} + P/t * (Sin(po/sinztp) (5-2)

Where p = vertical load per unit length acting on the reinforcement ring, in this

case p = 0. 2¢, = the angle corresponding to the opening. In this case ¢, = 10.2865° and

the span of the reinforcement ring is 10m.

In the hemispherical case, ¢ = 90°. From the given information, a = 28m, ¢

= .03m, and p = (23 KN/m3 * 1). Some domes are not closed at the upper portion and
have a lantern, a small tower for lighting, and ventilation. In the case in Ugural, a

reinforcing ring is used to support the upper structure.
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Therefore, Equation (5-1) for meridional stress yields -633.65 KPa at the bottom
edge of the dome. Equation (5-2) for hoop stress yields +633.65 KPa located at the top
of the dome.

In NASTRAN, the geometry for ¢ = 28m radius hemispherical dome was
generated using the parasolid modeling engine. The area of the lantern was subtracted
from the top of the dome. For the NASTRAN analysis, the upper structure is not

supported and therefore the stresses around the ring can be read and reinforcing designed
around the opening. Material properties were entered as £ = .03m, E = 20 x 106 KPa, v =
0.15, and mass density = (23 KN/m3) / (9.81 m/s2) = 0.002345. To include the self-

weight of the dome the gravitational acceleration, 9.81 m/ 52, was entered.

A four-noded quadrilateral plane element was used in meshing the dome. A
rough mesh was applied for initial comparison and then refined until the stresses
converged to the values found using the Ugural stress equations. The bottom edge of the
dome was constrained in the z-direction (vertically), and one node on the edge was
constrained in the X, y, and z directions to provide stability during analysis.

A fine mesh was used in the analysis of the stresses as shown in Figure 5-1. The
hoop stress at the bottom edge of the dome was found to be +647.5 KPa (Figure 5-2), and
the meridional stress at the bottom edge of the dome was -638.1 KPa (Figure 5-3).
Comparing the calculations using shell theory with the NASTRAN results, the stresses at

the bottom edge of the dome were found to be approximately equal; see Table 5-1.
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The maximum meridional stress around the opening was found to be -725.5 KPa

using NASTRAN (Figure 5-4).

Figure 5-4 — Meridional Stress Distribution around opening.



The maximum hoop stress around the opening was significantly less than the

meridional stress (approximately 300 KPa), see Figure 5-5.

Figure 5-5 — Hoop Stress Distribution around opening.

The truncated dome example illustrates the process of building the finite element
model, verifying the validity of the model by comparing the analysis with the shell theory

equations, and then exploring the model further.



Chapter 6
A COMPARISON BETWEEN SHELL THEORY AND FEA FOR A
NON-HEMISPHERICAL DOME

A comparison of a non-hemispherical dome was made between the NASTRAN
Finite Element Analysis results and shell theory equations using an example found on
page 129 of “Thin Shell Concrete Structures,” by David P. Billington (1). The rigidly
supported spherical dome of Figure 6-1 is analyzed for uniform gravity load over the
dome surface. The parameters of the problem are: a=94.5 ft, h =4 in. (constant shell
thickness), a = 28°, ro = a(sin (a)) = 44.25 fi. (parallel circle radius at springing), v = 1/6
= 0.167 (Poisson’s ratio), q = 50 psf (Dead Load) + 40 psf (Live Load) =90 psf. E =

57.,000*sqrt(4000 psi) = 519120 ksf, Mass Density = .0083851 for 90 psf total load.

i ht
-
b i T '
d 4 h, -
a ' -
}- ro i
m - o !
! dia
DIMENSIONS

Figure 6-1: Fixed Dome for Comparison Between FEA and Billington Example.
The forces were computed on the basis of the membrane theory where

N'(p = -a¥*q*[1/(1+cos(9))] = meridional force,

And

=8z



N'g = a*q*[[1/(1+cos(@))]-cos(p)] = hoop force,
and Mq, = meridional moment, as listed in Table 6-1.

Table 6-1 — Forces in a Spherical Dome on Fixed Supports.

¥ 0° (edge) 28° (apex)
N (q = 90 psf) -4.29 K/ft -4.25 k/ft
Ng (g =90 psf) -0.78 k/ft -4.25 k/ft
M (9 =90 psf) -0.26 k-fu/ft | 0 k-fv/ft

In NASTRAN, the geometry for the dome was generated using the parasolid
modeling engine. Material properties were entered as t = .3333 fi.,

E = 519120 ksf, v = 0.167, and mass density = .0083851. To include the self-weight of

the dome, an acceleration downward, due to gravity, of 32.2 fi/s2 was entered.

A four-noded quadrilateral plate element was used in meshing the dome. A rough
mesh was applied for initial comparison and then refined until the stresses converged to
the values found using Billington’s example. The bottom edge of the dome was
completely constrained.

The FEA analysis for meridional forces is shown in Figure 6-2. The irregularity
of force distribution is caused by the element shapes being slightly irregular due to the
shallowness of the dome. The meridional force at the edge was found to be -4.435 k/ft

and at the apex 4.22 k/ft. which are very close to the values obtained using shell theory.
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Chapter 7
AN INTRODUCTION TO SHELL THEORY FOR DOMES, RINGS, AND WALL
INTERACTIONS

In order to compare results between theory and FEA for domes on walls, more
theory must be introduced. This chapter addresses the additional calculations associated
with domes, rings, and wall interactions. According to Billington, it is usually not
possible to supply support tangent to the meridian at the edge of the dome. The usual
case of support is by vertical supports. Figure 7-1 shows the general structural problem

brought about by this situation.

N'a

V=Nasina

Figure 7-1—Dome Edge Reactions from Billington (1).

The membrane reaction N'a cannot be supplied by a vertical support. Thus, there
exists a horizontal displacement at the dome edge. The resulting dome forces may be
determined by combining the membrane values with those obtained from an analysis of
the dome pulled outward by an edge force H = - N'a cos a. It is usual practice for the

designer to impose some type of lateral restraint. Billington discusses three types: an

8-



edge ring, a supporting cylindrical wall, and a combination of ring and wall. The ring
support of Figure 7-2a is often realized in practice by an elastomeric ring pad placed on
top of the cylindrical wall. Some shear force will be transferred through the pad

depending upon the pad’s stiffness (23).

(a) (®)

G =il

(c)
Figure 7-2—Dome Edge Constructions from Billington. (a) Dome-Ring Edge
Construction, (b) Dome-Wall Edge Construction, (¢) Dome-Ring-Wall Edge

Construction.

Dome-Ring Analysis

In Billington’s dome and ring example, illustrated in Figure 7-2a, the ring is
assumed to be monolithic with the dome and to be free to slide and rotate on an
immovable support.

The stress resultants in the dome are computed using membrane theory previously
discussed. The horizontal component of N'a is held in equilibrium by the ring tension

T =N'a sin a cos o, where the dome radius a = r/sin a (see Figure 7-3a) (23).
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Figure 7-3—Dome-Ring Analysis from Billington (1).

Because of the displacements at the dome edge and the resulting dome stresses,
there will be four errors* (see note at chapter end): horizontal translation and rotation of
the dome edge (D10D and D20D) and of the ring (D10R and D20R); see Figure 7-3,
(notation from Billington). The dead-load displacements at the edge of a constant-
thickness spherical dome are:

D10D = (azquh) * [( (1+v)/(1+cos a)) — cos a] sin o

D20D = -(ag/Eh) * (2+ v)sina
And the ring errors are:

D10R = (cos a + (12*yo*e/d2))*(r2* N’ /E*b*d)

D20R = - (12*r2*e* N’a)/(E*b*d3)

Where d is the depth of the ring, b is the width of the ring, and r is the radius of the ring.
N’a is taken as negative and e as positive in the direction shown on Figure 7-3a. The

variables d” and yo are defined below:

d" =hd/2 * cos a

yo=d/2-d’

=8l =



Where hd is the dome-edge thickness and d” is generally small compared to d (see Figure

7-3a) (23).

The errors are combined to yield:
D10 =DI10D + DI10R
D20 = D20D + D20R

There are two correction forces needed*, designated X and X5. The dome

displacements due to X1 and X7 (D11D, D12D, D21D, D22D), are as follows (23):

D11D = [(2*B*a2*sin2 « )/(E*h)|*H
D12D = [(2*B*a2* sin a)/E*h] * Ma
D21D = [(2*B2*a2* sin a)/E*h] * H
D22D = [(4* p3*aZ)/E*h] * Mo
Where
B4 =[3 * (1 —v2)]/(a2*h2)
H and Ma are edge forces and moments.

The ring displacements (D11R, D12R, D21R, and D22R), are as follows (23):
D1IR ={1 + [(12 * yo2)/d2]} *[r2/(E*b*d)
D12R = D21R = - (12*r2*yo)/(E*b*d3)

D22R = (12*r2)/(E*b*d3)

I



These values are now combined directly with the corresponding dome displacements so

that (23):

D11 =DI11D+DI1IR
D12=D21=D12D + D12R
D22 = D22D + D22R

Compatibility equations are written and solved for X and X7 (23):
X1D11 +X3D12+D10=0
X1D21 + XD22 + D20 =0

Note that the ring is in tension and the dome is usually entirely in compression.
The membrane ring tension, T = N’a * r *cos a, forces the ring outward. Compatibility
requires that the dome follow this movement. The ring will not move as far as theory

predicts because of the restraint of the dome. Thus, the ring force is reduced by X (23).

Dome-Wall Analysis

According to Billington, it is possible to resist the horizontal component of the
membrane meridional thrust by building the dome into a cylindrical wall. Figure 7-4
illustrates the system in which the dome is considered supported fully by the wall. The
wall has a continuous edge force N’a under the dome load. It can be resolved into two

components (23):

H=N"a cos a

V=N'asina
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Chapter 8

DOME-RING-WALL EXAMPLE AND COMPARISON

It has become common practice to construct domes on stem walls, as shown in
Figure 8-1. Thus, a comparison between a dome-ring-wall solution from shell theory and
a finite element analysis (FEA) is practical. For this purpose, FEA results using Nastran
are compared to an example found on page 153 of David P. Billington’s text, “Thin Shell

Concrete Structures”

Figure 8-1-- Texhoma, Oklahoma-- Texhoma School District educates approximately 426

students in grades five through twelve. Architectural walls enhance the dome's

appearance while giving the ac/heating units a place to hide.
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The horizontal force, N a cos a, causes the wall to move outward and rotate®.
Thus (23):

D11W = 1/(2*p3*D)

D21W = - 1/(2* B2*D)

D22W = 1/ (B*D)
Where D = (E¥Hw3)/(12*(1-v2)), and Hw = the height of the wall.
For the edge load N’a cos a, these values become (23):

D10W = (N'a cos a)/(2*B3*D)

D20W = - (N'a cos a)/(2*B2*D)

Displacements due to correction force X| = 1 and correction moment X9 = 1 are
now determined by adding the values already shown for the dome and wall* (23):

D11=D11D+DI1W

D12 =DI12D + D12W =D21

D22 =D22D + D22W

The two compatibility equations are written in the same form as before and the
values of X| and X are determined (23).
Dome-Ring-Wall Analysis

When a wall replaces the ring, high tensile stresses develop in the edge region of
the cylinder. This high tension often requires heavy reinforcement and an increase in
wall thickness. Billington points out that in liquid-retaining structures it is not desirable

to have large regions of high ring tension because of the possibility that cracks and leaks

may develop (23).
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It is then more desirable to collect the tension forces back up into a ring. Figure

7-4 illustrates the dome-ring-wall action.

@) 23)

Figure 7-4—Dome-Ring-Wall Analysis from Billington (1).

Figure 7-4a illustrates the system in which all stress resultants for the dome and
the wall are determined by the membrane theory (23).

There are eight errors* (see Table 7-1) associated with the dome-ring-wall
analysis; namely, translation and rotation of the dome, the top of the ring, the bottom of
the ring, and the wall (D10D, D20D, D10R, D20R, D30R, D40R, D30W, and D40W,

respectively) (see Figure 7-4) (23).
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Table 7-1—Displacements for Dome-Ring-Wall Analysis (Errors)

(Rectangular ring cross section).

LOAD LOAD ON DOME

D10D (Dome) (a2q/Eh) * [( (1+v)/(1+cos o)) — cos a] sina
D20D (Dome) -(ag/Eh) * (2+ v)sin a

D10R (Ring Top) (cos o+ (1 2*yo*et/d2))*(r2* N'a/E*b*d)
D20R (Ring Top) - (12*r2*et* N’a)/(E*b*d3)

D30R (Ring Bottom) (-cos a + (6*et/d))*(r2* N’a/E*b*d)

D40R (Ring Bottom) + (12*12%et* N’(I.)/(E*b*d3)

D30W (Wall) 0

D40W (Wall) 0

There are four corrections* associated with the dome-ring-wall analysis: a force

X1 and a moment X9, which correspond to the required dome-ring values; and a force X3

and a moment X4, which correspond to a ring-wall analysis.

Due to the force X, obtained as before:

D11=DI11D+DI11IR

From the force X7 again:
D12 =DI12D + DI2R
From the ring-wall forces X3 and X4 come the displacements:
D13 = DI3R = - [(1/bd) — (12*yo*(d/2)/(b*d3))*(12/E)
And
D14 = D14R = (12*yo*r2)/(b*d3)

The rotation of the ring at the junction due to X3 is:

D23 = -(12*r2*(d/2))/(E*b*d3)
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And the rotation due to Xy is:
D24 = -(12*r2)/(E*b*d3)
The displacements at the ring-wall junction are:
D31 = D13 = - [(1/bd) — (12*yo*(d/2)/(b*d3))*(r2/E)
D32 = D23 = -(12*r2%(d/2))/(E*b*d3)
D33 =D33R + D33W

Where
D33R = {1 + [(12 * (-d/2)2)/d2]}*[r2/(E*b*d]
D34R = - (12*r2*(-d/2))/(E*b*d3)
D33W = 1/(2*p3*D)
D34W = - 1/(2* p2*D)
Then,

D34 = D34R + D34W
D41 = D14 = (12*yo*r2)/(E*b*d3)
D42 = D24 = -(12* r2)/( E*b*d3)
D43 = D34
D44 = D44R + D44W
Where
D44R = (12*r2)/(E*b*d3)
D44W =1/ (B*D)
There are now four simultaneous compatibility equations to solve for the four

corrections X1, X7, X3, and X4.

[



Now, the corrections combined with the basic shell theory equations can be used

to analyze and compare domes on rings or walls.

*Derivations for errors and correction equations can be found in “Thin Shell Concrete

Structures,” Second Edition, David P. Billington, McGraw-Hill Publishing Company

1990.
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Figure 8-2 gives the dimensions of a 1-million-gal water tank to be built above

grade. This tank will serve the purpose of this example.

88" - 6"

(a)

Pt

(b)

Figure 8-2—Domed Tank Dimensions from Billington (1).
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For the purpose of the finite element analysis, the dome-ring-wall junction is

modeled as shown in Figure 8-3.

g

5" —

R . B

Figure 8-3—Idealization of Dome-Ring-Wall Junctions for FEA from Billington (1).

The simply-supported water tank is analyzed for uniform gravity load plus live
load over the surface. In NASTRAN, the geometry for a 94’-6” radius hemispherical
dome was generated using the parasolid modeling engine. It was then sliced at a circle
defined 11°-0” from the apex of the dome. The dome thickness was idealized as 4 in.
uniform. A 20.5467 fi. tall cylinder was generated with a radius of 44.25 ft. to represent
the wall, and a 17.44 in. tall cylinder with the same radius was generated to represent the
ring. The wall thickness was entered as 0.41667 ft. and the ring thickness was 0.6667 ft.
Material properties were assumed to be: v = 1/6 = 0.167 (Poisson’s ratio), q = 50 psf
(Dead Load) + 40 psf (Live Load) = 90 psf, E = 57,000¥sqrt(4000 psi) = 519120 ksf,
Mass Density = .0083851 for 90 psf total load.

The bottom edge of the wall was constrained in the z-direction (vertically), and

S E =



one node on the edge was constrained in the x, y, and z directions to provide stability
during analysis. To include the self-weight of the dome, the gravitational acceleration of
32.2 fi/s2 was entered. A four-noded quadrilateral plate element was used in meshing the
dome. A rough mesh was applied for initial comparison and then refined until the forces
C-;'\i}‘a't_'{“__-‘_'.:t!.

Figure 8-4 shows the FEA distribution of hoop force found in the water tank
model. The mesh on the dome is slightly irregular causing some non-uniformity in the
force distribution (due to the shallow dome height). The hoop force in the dome at the

junction of the dome at the ring was found to be 25.2 k/ft. The hoop force at the junction

of the ring and wall was 2.797 k/ft.

ibution in Water Tank.




I'he meridional force distribution as found by the finite element analysis is shown
in figure 5. The meridional force in the dome at the junction of the dome at the ring was
found to be -2.147 k/ft. The meridional force at the junction of the ring and wall was

4.161 k/ft.

Figure 8-5—Meridional Force Distribution in Water Tank.



Figure 8-6 shows the FEA distribution of the moment in the water tank. The
value of the moment in the dome at the junction of the dome at the ring was found to be -

1.031 k-ft/ft. The moment at the junction of the ring and wall was -0.54 k-ft/ft.
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1gure 8-6—Distribution of Moment in Water Tank.
[able 8-1 shows the comparison of the FEA solution values and the dome-ring
\1|1;zf=l‘-. sis values from Billington.

n of Forces and Moments Between Dome-Ring Solution and FEA.

[able 8-1-—Comparisos
B . X . . mereiy
_ | Dome-Ring Solution Nastran FEA
Dome Hoop Force | 26.81 k/ft 25.2 k/tt
s t :

[ 3.00 k/fi 2.797 k/ft
| -2.88 k/fi 2.147 K/ft
I{%n_:;_ Meridional Force E 4.50 k/fi - 4.161 k/ft
Dome Moment | -0.78 k-fU/ft | -1.031 k-fi/fi

b IO | N AQ L /6 NcAl
Rine Moment (.68 k-1t/1t U4 K

Ring Hoop Force

Dome '_\Ei_‘l'idiﬂ[iil? | orce




Billington also compared this problem to a finite element analysis solution. He

concluded on page 179,

“The main conclusion from this study is that the approximate solution provides a
reasonable basis for design even though the more rigorous solution does give
somewhat different results. Where the finite-element program is readily
available, it can be used as a basis for design, but it is always important to study
such results carefully in the light of more approximate solutions.”
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Chapter 9

BUCKLING ANALYSIS OF TRUNCATED MONOLITHIC DOME USING
FINITE ELEMENT ANALYSIS

A real-life example of considerably more complexity is considered next.
Birmingham, Alabama is home to the largest diameter Monolithic Dome in the world
(see Figure 9-1). Faith Chapel Christian Center measures 280-feet in diameter with a
seating capacity of approximately 3,000. The dome encloses 61,575 square feet.
Architect Rick Crandall designed the church. Dome Technology of Idaho Falls, Idaho

built the dome shell.

Figure 9-1—Faith Chapel Christian Center (24).

Jesse Harris and Lee Gray of LPDJ Arichitects, LLC. are working steadily on the
expansion plans for Faith Chapel. The expansion will add on to the existing church and

will cover 130,000 square feet on a 16 acre portion of the 140 acre site (see Figure 9-2).
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Figure 9-2—Layout of the Planned Expansion for Faith Chapel Showing Existing

Structure on the Left (25).
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Atop one of the domes in the planned expansion is a plexiglass tower over a 12 ft.

diameter skylight (shown in Figure 9-3).

26'-11/2"
WIND LOAD
25 lbs/ft72
Projected Area is 1100 f1°2
roje rea is o

180" —F
Maximum Wind Load + Dead Load Reaction is 22 kips per support.

Figure 9-3—Plexiglass Tower Spanning 12 ft. Diameter Skylight at Apex of Dome.

A buckling analysis was performed to aid in the design of a thickened ring around
the skylight to support the loads caused by the overturning moment. The design goal was
to attain a factor of safety of at least 3, preferably higher, since the dome is in an area that
can have hurricane force winds. The largest force given by the manufacturers of the
tower due to the overturning moment would be at least 22 kips x 3.0 = 66 kips.

The approximate location of the centroid of the tower is:
[(14)(29.5°)(14.757) + (m)(14")2(42.5"))/[(14")(29.5 )+ n)(14°)2] =31.35 fi.
Using the given area of 1100 ft2 and given loads the overturning moment can be found.

Mot = (25 Ib/fi2)(1100 £i2)(31.35 ft) = 862 kips-ft.
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The load is applied on an 18°-0” diameter circle at 30° increments. The moment

of inertia for the circle and area are:
[ = 0.049087[(18)*-(17.5)4] = 549.1332 fi4
A =(9)2- 1 (8.75)2 = 13.94 fi2

And,
A/12=1.1617 fi2

Taking 1100 ft2 for the tower and multiplying it by 25 psf for the wind load, 27.5
kips is obtained. Multiply 27.5 kips and 31.35 ft to get a moment of 862.125 kips-ft.
Then, solving for the reactions in terms of moments 862.125 kips-ft is divided by 46.57
to get 18.5 kips, which represents the axial load from the tower. Subtracting 18.5 kips
from the given 22 kips it is found that the design axial load is 3.5 kips per location.

Using M/, the bending stress can be found at the location of each point of
loading:

Forc=9 ft. MC/I = [(862 k-ft)(9 f1)]/549.1332 ft4 = 14.1277 ksf

For ¢ = 7.714 ft. MC/I = [(862 k-ft)(7.714 f1)]/549.1332 ft4 = 12.10 ksf

Forc=45ft. MC/ = [(862 k-ft)(4.5 f1)]/549.1332 ft4 = 7.06 ksf

Thus, forc =9 ft: (14.1277 ksf)( 1.1617 ﬂz) =16.41 kips; ¢ = 7.714 ft:

(12.10 ksf)( 1.1617 ft2) = 14.06 kips; ¢ = 4.5 ft: (7.06 ksf)( 1.1617 fi2) = 8.2 kips.
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The points of application of the forces are shown in Figure 9-4 below.

Figure 9-4—Load Application Points on 18 ft. Diameter Circle around 12 ft. Diameter
Skylight.

The total point loads at each location are listed below:

At A: 3.5 kips + 16.41 kips = 19.91 kips

At B: 3.5 kips + 14.06 kips = 17.56 kips

At C: 3.5 kips + 8.2 kips= 11.7 kips

At D: 3.5 kips

At A" 3.5 kips — 16.41 kips =-12.91 kips

AtB": 3.5 kips — 14.06 kips = -10.56 kips

At C": 3.5 kips — 8.2 kips = -4.7 kips
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For the buckling analysis in NE/Nastran, these point loads must be scaled to
represent a unit load. After scaling the point loads at each location to a unit load
equivalent by dividing each individual load by the sum of the loads, the resulting point
loads are:

At A: 0.474kips

AtB: 0.418 kips

At C: 0.279 kips

At D: 0.0833kips

At A": -0.307 kips

AtB": -0.251 kips

At C": -0.112 kips

The material properties used in this project are as follows: for f'c = 4,000 psi
concrete, E = 519120 ksf: mass density = .00466 kips/ft3; v = 0.17; and thickness = 6 in.
or 0.5 ft. The dome radius is 101.5 ft, with a skylight cut out at the apex with a diameter
of 12 ft. The loads are applied on a circle of diameter 18 ft. A thickened ring with a 20 ft
diameter is at the top of the dome to support the loads from the overturning moment. The
ring is 14 in. thick.

In NASTRAN, the geometry for a 101.5 ft radius hemispherical dome was
generated using the parasolid modeling engine. Material properties were entered as

above. To include the self-weight of the dome acceleration downward, due to gravity, of

32.2 fi/s? was entered.
The shell element used in meshing the dome is called CQUADR, CTRIAR. This

type of shell element is preferred for curved structures as it has a complete six degrees of
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freedom per node element. A rough mesh was applied for initial comparison and then
refined. The bottom edge of the dome was fixed since the primary concern was the top of
the dome.

The buckling analysis is well explained in the NE/Nastran and Modeler Tutorial.
The goal of this analysis was to use NE/Nastran to predict the critical load that causes the
top of the dome to buckle. In a typical buckling analysis, a unit load is applied to the
model. Nastran then calculates the smallest eigenvalue, A, that, when multiplied by the
unit load, gives the critical load that causes the buckling. In this case the unit load is a
series of point loads around the 18 fi. diameter circle. To accomplish this, Nastran
calculates the resulting stresses from the application of these loads and then the
eigenvalue and buckling mode shapes. This is the stress caused by a 1 kip load. The
eigenvalue returned by NE/Nastran multiplied by the unit load gives the critical buckling
load.

The lowest eigenvalue associated with buckling in the top of the dome was found
to be 140.14960 as shown in Figure 9-5. The buckling modes previous to this value were

not the concern of this study as they occurred at the edge of the dome.
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Figure 9-5—Controlling Eigenvalue, A = 140.14960, for Buckling Analysis.

A closer look at the controlling buckling mode shape is given in Figure 9-6.



Figure 9-6—Controlling Buckling Mode Shape Associated with A = 140.14960.

The critical buckling load is computed by multiplying the maximum applied load,
0.474kips, by the eigenvalue returned from Nastran. This indicates that the top of the
dome buckles when the maximum point load applied is 66.431kips. Thus, the factor of
safety is 66.421kips / 22kips = 3.02.

This model yielded the desired factor of safety, yet it was decided to try a ribbed
model that was less thick at the top of the dome to reduce the weight. The dome radius is
the same at 101.5 ft, with a skylight cut out at the apex with a diameter of 12 ft. The
loads are applied again on a circle of diameter 18 ft. A thickened ring two feet in width
and one foot in depth is at the top of the dome with the curve of loading located in the
center of the beam. Radiating off of the ring beam at the top of the dome are 1" x 1" ribs

that are 20 ft. long (see Figure 9-7).
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Figure 9-7--101.5 ft. diameter hemisphere with 1" x 1" ribs 20" long at 30" off 2" x 1"

ring at top of dome around 12" diameter skylight.

The ribbed model built in Nastran had a shell thickness of 4 in. with material
properties as before. Buckling mode 40 for 101.5 ft. diameter hemisphere was the

controlling mode for the apex of the dome with a controlling eigenvalue of: A4 =

97.916557 (see Figure 9-8). This indicates that the top of the dome buckles when the
maximum point load applied is 46.41 kips. Thus, the factor of safety is 46.41 kips / 22

kips =2.11.



i
!
3;
:

—t

B £l 2 RBL2 Bk

7ile Ficture Save : g
Opening File C:\Dacuments and Settings\nll - ia heml w 1Ft ribs at 30 deg & in thick =

: Prop 1 i1 Con) G0 Dwdl OF

#start| 8 (71 (5] * ) Doamenti -Moosoft . || 1 % onit load dist han_. PR I«QieRACo QD sioam
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A closer look at the controlling buckling mode shape is given in Figure 9-9.

Figure 9-9—Controlling Buckling Mode Shape Associated with A4 = 97.916557.

The factor of safety of 2.11 is not sufficient so a second model was analyzed with
a shell thickness of 5 in. Buckling mode 49 for the apex of the 101.5 ft. diameter

hemisphere was the controlling mode with a controlling eigenvalue of: Ag9 = 129 (see

Figure 9-10). This indicates that the top of the dome buckles when the maximum point

load applied is 61.15 kips. Thus, the factor of safety is 61.15 kips / 22 kips = 2.78.
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A closer look at the controlling buckling mode shape is given in Figure 9-11.

Figure 9-11—Controlling Buckling Mode Shape Associated with A49 = 129.

The factor of safety of 2.78 is still too small. A modification of the same
configuration at the top of the dome is analyzed to prevent increasing the shell thickness
yet again. The dome radius is the same at 101.5 ft, with a skylight cut out at the apex
with a diameter of 12 ft. The loads are applied again on a circle of diameter 18 ft. A
thickened ring two feet in width and one foot in depth is at the top of the dome with the
curve of loading located in the center of the beam. Radiating off of the ring beam at the
top of the dome are the 1" x 1 ribs that are 20 ft. long. Added are two transverse 1" x 1°

ribs that are located at 10 ft., and 20 ft., from the edge of the ring (see Figure 9-12).
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Figure 9-12—Ring Beam, Radial Ribs, and Transverse Ribs around Skylight Opening.

The ribbed model built in Nastran has a shell thickness of 5 in. with material
properties as before. The controlling buckling mode yields an eigenvalue of: A = 141
(see Figure  9-13). This indicates that the top of the dome buckles when the maximum
point load applied is 66.834 kips. Thus, the factor of safety is 66.834 kips / 22 kips =

3.04.
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Figure 9-13--Controlling Buckling Eigenvalue A = 141 for 101.5 ft. diameter hemisphere
with 1" x 1" radial ribs 20" long at 30" off 2" x 1" ring at top of dome around 12" diameter
skylight. Two 1'x1" transverse ribs are located at 10" and 20" from ring beam. Shell

thickness = 5in.
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A closer look at the controlling buckling mode shape is given in Figure 9-14.

Figure 9-14-- Controlling Buckling Mode Shape Associated with A = 141.

The factor of safety is satisfactory, so the hoop and meridional stresses are of
interest and are shown in Figures 9-15 and 9-16, respectively. Mx and My distributions

are similarly shown in Figures 9-17 and 9-18, respectively.
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Figure 9-15--Hoop Stresses at the Top of Ribbed Dome. Maximum stress = -21 ksf.

Maximum stress at top of dome = -17 ksf.
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Figure 9-16--Meridional Stresses at the Top of Ribbed Dome. Maximum stress = -21

ksf. Maximum stress at top of dome = -17 ksf.
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Figure 9-18--My = -0.4 kips-ft/ft at top of dome (blue
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This chapter illustrates the power of the finite element program. Once the initial
model is verified by comparing the basic stress equations with the basic FEA results,
powerful design conclusions can be drawn and complicated problems can be analyzed by
employing the basic finite element analysis and other functions, such as the buckling

analysis and dynamic analysis.
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Chapter 10

CONCLUSIONS

Conclusions drawn from the study of shell theory, finite element analysis theory, and the

comparisons between them are:

The finite element model must be carefully made as very minor oversights or
errors can possibly lead to extremely unreliable data. Compatibility of element
boundaries must be verified and constraints must be applied precisely or large

errors can result.

Uniformly and symmetrically meshing the domain will provide well distributed

force, moment, and stress resultants.

Comparison of the results between shell theory and the finite element model

indicate that finite element results are reliable and they can be used in analysis

and design of these structures with confidence.

Finite element modeling and analysis could be used for more complicated

geometry and loadings where hand calculations are impossible or hard to perform.

.97 .



REFERENCES

1. Eric M. Hines and David P. Billington, “Anton Tedesko and the Introduction of Thin
Shells in the United States,” June 9, 2003

2. “Case Histories.” http://www.arche.psu.edu/thinshells/module%20I/case studies.htim,
6/9/05

3. “Memorial Tributes,” National Academy of Engineering, Volume 8 (1996),
http://www.nap.edu/openbook/030905575X/html/R1.html , 3/24/05

4. Hershey Community Archives, Hershey History, Hershey Sports Arena,
http://www.hershevarchives.org/Default.aspx?Page=HersheyArena , 3/24/05

5. Sara Askari, “Pier Luigi Nervi,” http://www.uweb.edu/galta/333/nervi.htm, 9/7/05

6. Riccardo Cigola, “Art: Artists and Architects,”
http://www.italycyberguide.com/Art/artistsarchite/nervi.htm, 9/7/05

7. http://www.unpi.com/nervi.html, United Nations Philatelists, Inc., 9/7/05

8. “Felix Candela.” http://www.greatbuildings.com/architects/Felix Candela.html,
9/7/05

9. “Felix Candela,” Encyclopedea Brittanica Online,
http://www.britannica.com/eb/article?tocld=9019950, 9/7/05

10. “Felix Candela,” Architecture, Biographies,” AllRefer.com,
http://reference.allrefer.com/encvelopedia/C/Candela.html, 9/7/05

11. “Felix Candela,” Huddersfieldgem,
http://www.monoculartimes.co.uk/huddersfieldgem/texts/candela.shtml, 9/7/05

12. “Eduardo Torroja,” Encyclopedea Brittanica Online,
http://www.britannica.com/eb/article-9072985, 9/7/05

13. “Eduardo Torroja y Miret,” Structurae,
http://en.structurae.de/persons/data/index.cfm?ID=d000039, 9/7/05

14. “Torroja y Miret, Eduardo,” Bartleby.com,
http://www.bartleby.com/65/to/Torrojay.html, 9/7/05

15. C. Andrade, I. Martinez, M. Ramirez, M. Garcia, “Non Destructive Techniques for
On Site Measurements of Reinforcement Corrosion in Concrete Structures,” BAM,

http://www.ndt.net/article/ndtce03/papers/p017/p017.htm, 9/7/05

-98 -



16. “Modern Architecture,” Archpeda, http://www.archpedia.com/Styles-Modern-5.html,
9/7/05

17. “Who We Are -- The Monolithic Story,” Monolithic Dome Articles,
http://www.monolithic.com/thedome/whoweare/index.html, 9/7/05

18. “Introduction to the Monolithic Dome,” Monolithic Dome Articles,
http://www.monolithic.com/thedome/thedome/index.html, 9/7/05

19. “Queensgate Market, Huddersfield,” The Tiles and Architectural Ceramics Society,
http://www.tilesoc.org.uk/huddmarket.htm, 9/7/05

20. Daryl L. Logan, “A First Course in the Finite Element Method,” Third Edition,
Brooks/Cole 2002.

21. “NE/Nastran for Windows User Guide,” Version 8.3, Noran Engineering, Inc. 2003

22. A.C. Ugural , “Stresses in Plates and Shells,” New York : McGraw-Hill, 1981.

23. David P. Billington , “Thin Shell Concrete Structures,” Second Edition, McGraw-
Hill Publishing Company, 1990.

24. “Eye-Catching New Exterior for Faith Chapel,” Monolithic Dome Churches,
http://www.monolithic.com/gallery/churches/faith chapel-paint/index.html. 8/18/05.

25. “Plans Continue for Major Expansion of Faith Chapel,” Monolithic Dome Churches,
http://www.monolithic.com/gallery/churches/faith chapel-expan/index.html, 8/18/05.

26. “NE/Nastran and Modeler Tutorial,” Version 8.2, Noran Engineering Inc. 2002

-99 -



Photocopy and Use Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced
degree at Idaho State University, I agree that the Library shall make it freely available for
inspection. 1 further state that permission for extensive copying of my thesis for
scholarly purposes may be granted by the Dean of Graduate Studies, Dean of my
academic division, or by the University Librarian. It is understood that any copying or
publication of the thesis for financial gain shall not be allowed without my written

permission.

3

- ) I -t
Signature | /A4 LLLC o

g T W
Date [ )70 . 20 ) L0005




